• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Jan 1993; 13(1): 391–398.
PMCID: PMC358919

The effect on chromosome stability of deleting replication origins.

Abstract

The observed spacing between chromosomal DNA replication origins in Saccharomyces cerevisiae is at least four times shorter than should be necessary to ensure complete replication of chromosomal DNA during the S phase. To test whether all replication origins are required for normal chromosome stability, the loss rates of derivatives of chromosome III from which one or more origins had been deleted were measured. In the case of a 61-kb circular derivative of the chromosome that has two highly active origins and one origin that initiates only 10 to 20% of the time, deletion of either highly active origin increased its rate of loss two- to fourfold. Deletion of both highly active origins caused the ring chromosome to be lost in approximately 20% of cell divisions. This very high rate of loss demonstrates that there are no efficient cryptic origins on the ring chromosome that are capable of ensuring its replication in the absence of the origins that are normally used. Deletion of the same two origins from the full-length chromosome III, which contains more than six replication origins, had no effect on its rate of loss. These results suggest that the increase in the rate of loss of the small circular chromosome from which a single highly active origin was deleted was caused by the failure of the remaining highly active origin to initiate replication in a small fraction (approximately 0.003) of cell cycles.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Boeke JD, Trueheart J, Natsoulis G, Fink GR. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. [PubMed]
  • Brewer BJ, Fangman WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. [PubMed]
  • Deshpande AM, Newlon CS. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Oct;12(10):4305–4313. [PMC free article] [PubMed]
  • Devenish RJ, Newlon CS. Isolation and characterization of yeast ring chromosome III by a method applicable to other circular DNAs. Gene. 1982 Jun;18(3):277–288. [PubMed]
  • Dubey DD, Davis LR, Greenfeder SA, Ong LY, Zhu JG, Broach JR, Newlon CS, Huberman JA. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol Cell Biol. 1991 Oct;11(10):5346–5355. [PMC free article] [PubMed]
  • Greenfeder SA, Newlon CS. A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol Biol Cell. 1992 Sep;3(9):999–1013. [PMC free article] [PubMed]
  • Greenfeder SA, Newlon CS. Replication forks pause at yeast centromeres. Mol Cell Biol. 1992 Sep;12(9):4056–4066. [PMC free article] [PubMed]
  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. [PubMed]
  • Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jun;8(6):2523–2535. [PMC free article] [PubMed]
  • Hieter P, Mann C, Snyder M, Davis RW. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell. 1985 Feb;40(2):381–392. [PubMed]
  • Holm C, Meeks-Wagner DW, Fangman WL, Botstein D. A rapid, efficient method for isolating DNA from yeast. Gene. 1986;42(2):169–173. [PubMed]
  • Huberman JA, Spotila LD, Nawotka KA, el-Assouli SM, Davis LR. The in vivo replication origin of the yeast 2 microns plasmid. Cell. 1987 Nov 6;51(3):473–481. [PubMed]
  • Huberman JA, Zhu JG, Davis LR, Newlon CS. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. Nucleic Acids Res. 1988 Jul 25;16(14A):6373–6384. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Johnston LH, Williamson DH. An alkaline sucrose gradient analysis of the mechanism of nuclear DNA synthesis in the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1978 Aug 17;164(2):217–225. [PubMed]
  • Kipling D, Kearsey SE. Reversion of autonomously replicating sequence mutations in Saccharomyces cerevisiae: creation of a eucaryotic replication origin within procaryotic vector DNA. Mol Cell Biol. 1990 Jan;10(1):265–272. [PMC free article] [PubMed]
  • Louis EJ, Haber JE. Nonrecombinant meiosis I nondisjunction in Saccharomyces cerevisiae induced by tRNA ochre suppressors. Genetics. 1989 Sep;123(1):81–95. [PMC free article] [PubMed]
  • Murray AW, Schultes NP, Szostak JW. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986 May 23;45(4):529–536. [PubMed]
  • Newlon CS. Yeast chromosome replication and segregation. Microbiol Rev. 1988 Dec;52(4):568–601. [PMC free article] [PubMed]
  • Newlon CS, Lipchitz LR, Collins I, Deshpande A, Devenish RJ, Green RP, Klein HL, Palzkill TG, Ren RB, Synn S, et al. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics. 1991 Oct;129(2):343–357. [PMC free article] [PubMed]
  • Newlon CS, Petes TD, Hereford LM, Fangman WL. Replication of yeast chromosomal DNA. Nature. 1974 Jan 4;247(5435):32–35. [PubMed]
  • Oliver SG, van der Aart QJ, Agostoni-Carbone ML, Aigle M, Alberghina L, Alexandraki D, Antoine G, Anwar R, Ballesta JP, Benit P, et al. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. [PubMed]
  • Palzkill TG, Newlon CS. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell. 1988 May 6;53(3):441–450. [PubMed]
  • Petes TD, Williamson DH. Fiber autoradiography of replicating yeast DNA. Exp Cell Res. 1975 Oct 1;95(1):103–110. [PubMed]
  • Rivier DH, Rine J. An origin of DNA replication and a transcription silencer require a common element. Science. 1992 May 1;256(5057):659–663. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Smith GE, Summers MD. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. [PubMed]
  • Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. [PMC free article] [PubMed]
  • Surosky RT, Newlon CS, Tye BK. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc Natl Acad Sci U S A. 1986 Jan;83(2):414–418. [PMC free article] [PubMed]
  • Surosky RT, Tye BK. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics. 1985 Jul;110(3):397–419. [PMC free article] [PubMed]
  • Symington LS, Petes TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. [PMC free article] [PubMed]
  • Theis JF, Newlon CS. The DNA sequence of a 762 bp fragment containing the SUP11-1 gene. Yeast. 1992 Mar;8(3):223–225. [PubMed]
  • Tuite MF, Mundy CR, Cox BS. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics. 1981 Aug;98(4):691–711. [PMC free article] [PubMed]
  • Van Houten JV, Newlon CS. Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol. 1990 Aug;10(8):3917–3925. [PMC free article] [PubMed]
  • Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. [PubMed]
  • Williamson DH. The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J Cell Biol. 1965 Jun;25(3):517–528. [PMC free article] [PubMed]
  • Yoshikawa A, Isono K. Chromosome III of Saccharomyces cerevisiae: an ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes. Yeast. 1990 Sep-Oct;6(5):383–401. [PubMed]
  • Zhu J, Newlon CS, Huberman JA. Localization of a DNA replication origin and termination zone on chromosome III of Saccharomyces cerevisiae. Mol Cell Biol. 1992 Oct;12(10):4733–4741. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...