Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. 1984 Mar; 81(5): 1341–1345.
PMCID: PMC344829

Analysis of the pleiotropic regulation of flagellar and chemotaxis gene expression in Caulobacter crescentus by using plasmid complementation.


The biosynthesis of the single polar flagellum and the proteins that comprise the chemotaxis methylation machinery are both temporally and spacially regulated during the Caulobacter crescentus cell-division cycle. The genes involved in these processes are widely separated on the chromosome. The region of the chromosome defined by flaE mutations contains at least one flagellin structural gene and appears to regulate flagellin synthesis and flagellar assembly. The protein product of the adjacent flaY gene was found to be required to regulate the expression of several flagellin proteins and the assembly of a functional flagellum. We demonstrate here that each of these genes is also required for the expression of chemotaxis methylation genes known to map elsewhere on the chromosome. In order to study the regulation of these genes, plasmids were constructed that contain either an intact flaYE region or deletions in the region of flaY. These plasmids were mated into a wild-type strain and into strains containing various Tn5 insertion and deletion mutations and a temperature-sensitive mutation in the flaYE region. The presence of a plasmid containing the flaYE region allowed the mutant strains to swim and to exhibit chemotaxis, to synthesize increased amounts of the flagellins, to methylate their "methyl-accepting chemotaxis proteins" (MCPs), and to regain wild-type levels of methyltransferase activity. Chromosomal deletions that extend beyond the cloned region were not complemented by this plasmid. Plasmids containing small deletions in the flaY region failed to restore to any flaY or flaE mutants the ability to swim or to assemble a flagellar filament. When mated into a wild-type strain, plasmids bearing deletions in the flaY region were found to be recessive. The pleiotropic regulation of flagellin synthesis, assembly, and chemotaxis methylation functions exhibited by both the flaY and flaE genes suggest that their gene products function in a regulatory hierarchy that controls both flagellar and chemotaxis gene expression.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Komeda Y, Kutsukake K, Iino T. Definition of additional flagellar genes in Escherichia coli K12. Genetics. 1980 Feb;94(2):277–290. [PMC free article] [PubMed]
  • Komeda Y. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol. 1982 Apr;150(1):16–26. [PMC free article] [PubMed]
  • Suzuki T, Komeda Y. Incomplete flagellar structures in Escherichia coli mutants. J Bacteriol. 1981 Feb;145(2):1036–1041. [PMC free article] [PubMed]
  • Parkinson JS, Parker SR, Talbert PB, Houts SE. Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J Bacteriol. 1983 Jul;155(1):265–274. [PMC free article] [PubMed]
  • Johnson RC, Ely B. Analysis of nonmotile mutants of the dimorphic bacterium Caulobacter crescentus. J Bacteriol. 1979 Jan;137(1):627–634. [PMC free article] [PubMed]
  • Shaw P, Gomes SL, Sweeney K, Ely B, Shapiro L. Methylation involved in chemotaxis is regulated during Caulobacter differentiation. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5261–5265. [PMC free article] [PubMed]
  • Shapiro L, Maizel JV., Jr Synthesis and structure of Caulobacter crescentus flagella. J Bacteriol. 1973 Jan;113(1):478–485. [PMC free article] [PubMed]
  • Osley MA, Newton A. Mutational analysis of developmental control in Caulobacter crescentus. Proc Natl Acad Sci U S A. 1977 Jan;74(1):124–128. [PMC free article] [PubMed]
  • Sheffery M, Newton A. Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell. 1981 Apr;24(1):49–57. [PubMed]
  • Lagenaur C, Agabian N. Caulobacter flagellar organelle: synthesis, compartmentation, and assembly. J Bacteriol. 1978 Sep;135(3):1062–1069. [PMC free article] [PubMed]
  • Weissborn A, Steinmann HM, Shapiro L. Characterization of the proteins of the Caulobacter crescentus flagellar filament. Peptide analysis and filament organization. J Biol Chem. 1982 Feb 25;257(4):2066–2074. [PubMed]
  • Gill PR, Agabian N. A comparative structural analysis of the flagellin monomers of Caulobacter crescentus indicates that these proteins are encoded by two genes. J Bacteriol. 1982 May;150(2):925–933. [PMC free article] [PubMed]
  • Gill PR, Agabian N. The nucleotide sequence of the Mr = 28,500 flagellin gene of Caulobacter crescentus. J Biol Chem. 1983 Jun 25;258(12):7395–7401. [PubMed]
  • Koyasu S, Asada M, Fukuda A, Okada Y. Sequential polymerization of flagellin A and flagellin B into Caulobacter flagella. J Mol Biol. 1981 Dec 5;153(2):471–475. [PubMed]
  • Purucker M, Bryan R, Amemiya K, Ely B, Shapiro L. Isolation of a Caulobacter gene cluster specifying flagellum production by using nonmotile Tn5 insertion mutants. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6797–6801. [PMC free article] [PubMed]
  • Milhausen M, Gill PR, Parker G, Agabian N. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6847–6851. [PMC free article] [PubMed]
  • Johnson RC, Ferber DM, Ely B. Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants. J Bacteriol. 1983 Jun;154(3):1137–1144. [PMC free article] [PubMed]
  • Ely B, Croft RH. Transposon mutagenesis in Caulobacter crescentus. J Bacteriol. 1982 Feb;149(2):620–625. [PMC free article] [PubMed]
  • Ditta G, Stanfield S, Corbin D, Helinski DR. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. [PMC free article] [PubMed]
  • Ely B. Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus. Genetics. 1979 Mar;91(3):371–380. [PMC free article] [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Shapiro L, Mansour J, Shaw P, Henry S. Synthesis of specific membrane proteins is a function of DNA replication an phospholipid synthesis in Caulobacter crescentus. J Mol Biol. 1982 Aug 5;159(2):303–322. [PubMed]
  • Kort EN, Goy MF, Larsen SH, Adler J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3939–3943. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...