Logo of neurdevBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleNeural DevelopmentJournal Front Page
Neural Dev. 2012; 7: 24.
Published online 2012 Jul 2. doi:  10.1186/1749-8104-7-24
PMCID: PMC3407702

The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons



The pre B-cell leukemia transcription factor 1 (Pbx1) genes belong to the three amino acid loop extension family of homeodomain proteins that form hetero-oligomeric complexes with other homeodomain transcription factors, thereby modulating target specificity, DNA binding affinity and transcriptional activity of their molecular associates.


Here, we provide evidence that Pbx1 is expressed in mesencephalic dopaminergic neurons from embryonic day 11 into adulthood and determines some of the cellular properties of this neuronal population. In Pbx1-deficient mice, the mesencephalic dopaminergic axons stall during mid-gestation at the border between di- and telencephalon before entering the ganglionic eminence, leading to a loose organization of the axonal bundle and partial misrouting. In Pbx1-deficient dopaminergic neurons, the high affinity netrin-1 receptor, deleted in colon cancer (DCC), is down-regulated. Interestingly, we found several conserved Pbx1 binding sites in the first intron of DCC, suggesting a direct regulation of DCC transcription by Pbx1.


The expression of Pbx1 in dopaminergic neurons and its regulation of DCC expression make it an important player in defining the axonal guidance of the midbrain dopaminergic neurons, with possible implications for the normal physiology of the nigro-striatal system as well as processes related to the degeneration of neurons during the course of Parkinson’s disease.

Keywords: Axonal outgrowth, neurodegenerative disease, Prep1, substantia nigra, transcription factors, ventral tegmentum


Pre B-cell leukemia transcription factor 1 (Pbx1) encodes a transcription factor, belonging to the PBC (Pbx1 to 4) subclass of the three amino acid loop extension (TALE) proteins characterized by an atypical homeodomain [1]. Studies of the Pbx proteins and their Drosophila homolog Extradenticle (exd) revealed that they form stable complexes with other homeodomain transcription factors, such as Hox and Engrailed, as well as other non-homeodomain proteins [2]. The interaction with Pbx modulates the target selectivity, the DNA binding affinity and the transcriptional activity of the associated homeoproteins [3]. An example of the modulation of transcriptional activity by the Pbx transcription factors is the regulation of Fibroblast growth factor 8 (Fgf8) expression by the Engrailed transcription factors. A highly conserved region in the large intron of the Fgf8 gene contains an Engrailed/Pbx binding site. This part of the enhancer increases transcriptional activity by three to fourfold in the presence of embryonic nuclear extract containing the Engrailed proteins and Pbx1, and point mutations in the binding site inactivate it [4].

Pbx loss of function phenotype is to a large part a reflection of the phenotypic alterations observed after functional ablation of the associated molecular partner. In Drosophila, for example, embryos lacking exd (zygotic or maternal) show the typical homeotic transformations in the thoracic and abdominal segments that resemble the loss of function phenotypes of the Hox genes cooperating with exd, although their expression is unaltered [5]. In mammals, the correlation between phenotypes of mutants deficient for Pbx1 and null mutants for the molecular partners is not as evident [6]. Pbx genes have been implicated in development of the skeleton [7], pancreas [8], kidney, adrenal glands [9,10], thymus [11], spleen [12] and in hematopoiesis [13]. A number of homeodomain transcription factors play a major role in the development of all of these tissues and organs systems and may act as cofactors for Pbx genes.

We have previously demonstrated that the Engrailed genes are required for survival of the mesencephalic dopaminergic (mesDA) neurons [14,15]. The survival function of Engrailed genes is unique to these neurons and is not shared with other neuronal populations expressing the genes, like the cerebellar granule cells [16,17] or the V1 interneurons in the spinal cord [18]. The cooperative binding to Pbx1 protein has already been shown to modulate the regulation of Fgf8 expression by the Engrailed genes, a crucial factor for the development of the mesDA neurons [4,19,20]. We therefore hypothesized that cooperative binding to Pbx proteins may modulate the target selectivity of the Engrailed genes in mesDA neurons.

We examined the expression and function of the Pbx genes in this neuronal population during development and show here that a splicing variant of Pbx1Pbx1a, and one of the Prep genes, Prep1, are expressed by mesDA neurons. Furthermore, our analysis of Pbx1 mutant mice demonstrates a role of Pbx1 in axon guidance through the regulation of the netrin-1 receptor, deleted in colon cancer (DCC). Interestingly, despite increasing evidence of a cooperative function of Engrailed and Pbx transcription factors in vertebrates development [4,21], we could not find a 1:1 correlation between Engrailed and Pbx1 mutants’ phenotype. In our case, a more detailed analysis of different single and compound mutants might be necessary to confirm our original hypothesis of a Pbx/Engrailed functional cooperative binding playing a significant role in the development and survival of mesDA.


Pbx1 expression in mesencephalic dopaminergic neurons

To examine expression of the Pbx family members in mesDA neurons, we performed in situ hybridization on midbrain sections of various ages. We restricted our analysis to those family members, Pbx12 and 3, which are expressed in the brain [22]. Of note, only Pbx1a, a splicing variant of Pbx1, co-localized with tyrosine hydroxylase (TH), the key enzyme of dopamine synthesis (Figure (Figure1).1). At embryonic day (E) 11, Pbx1a was expressed in the entire developing midbrain neuroepithelium. Ventrally on the pial site, an elevated signal was observable that overlapped with TH in the parallel section, suggesting co-expression (Figure (Figure1A,1A, B). At E14, Pbx1a expression was more restricted and now clearly overlapped with TH (Figure (Figure1C,1C, D). The staining with a pan-Pbx antibody at the same embryonic stage revealed that each TH-positive cell body in the midbrain possessed a Pbx1-positive nucleus (Figure (Figure1I-K).1I-K). At postnatal ages, Pbx1a expression was decreased in intensity and disappeared in many brain regions, but remained at high levels in all mesDA neurons (for the adult see Figure Figure1N,1N, O). Furthermore, a double immunostaining using the pan-Pbx antibody and an antibody against β-galactosidase to detect the Engrailed1 (En1) reporter LacZ [23] revealed that Pbx1a is co-expressed with En1 in these neurons (for the adult see Figure Figure2A-E).2A-E). We also detected by in situ hybridization a diffuse Pbx3 RNA signal in the ventral midbrain from E14 into the adult (Figure (Figure1G),1G), but a Pbx3 specific antibody on wild type was unable to detect any Pbx3 protein in mesDA neurons (Figure (Figure1L,1L, M). However, Pbx3 protein was detectable in other brain regions, like for example the raphe nucleus (Figure (Figure1L,1L, M insert).

Figure 1
Expression of Pbx1a in mesencephalic dopaminergic neurons. In situ hybridization using 35 S- (A, B) and digoxigenin-riboprobes (C-H, N, O) against TH (A, C, F, N), Pbx1a (B, D, O), Pbx1b (E), Pbx2 (H) and Pbx3 (G) on E11 sagittal (A, B) and coronal ...
Figure 2
Adult expression of Pbx1a and En1 in mesencephalic dopaminergic neurons. In situ hybridization using digoxigenin-labeled riboprobes against (A) Pbx1a and (B) En1 on adult coronal sections and immunohistochemistry on adult mid-sagittal sections of En1+/tlZ ...

Pbx1 sub-cellular localization

The activity of PBC proteins is in part regulated by nuclear import, which is mediated by dimerization with homeoproteins of the MEINOX (MEIS and KNOX) sub-class, or by phosphorylation [24-27]. The MEIS subfamily of TALE proteins includes the products of the vertebrate Meis1-3, while the PREP subfamily includes the vertebrate Prep1 and Prep2. Exd and Pbx proteins have been shown to require MEIS/PREP for their nuclear import in specific cell contexts, such as limb mesenchymal cells in vertebrates or limb imaginal disc cells in flies [28-32].

Since the Pbx1a protein was localized in the nucleus of mesDA neurons, we investigated whether any of the Meis genes are also expressed in these neurons. We found Meis1, Meis2 and Meis3 expression in telencephalon, diencephalon, midbrain and hindbrain as previously described [33], but none of them in mesDA neurons (Figure (Figure3A-D).3A-D). Despite previous reports of a ubiquitous expression of Prep1 in the developing brain from as early as E7.5, we detected by immunohistochemistry a specific Prep1 domain in the ventral midbrain, co-localized with TH (Figure (Figure3E-I),3E-I), indicating that the nuclear transport of the Pbx1 protein is likely achieved in this neuronal population by molecular association with Prep1.

Figure 3
Expression of MEINOX genes in ventral midbrain. In situ hybridization using digoxigenin-labeled riboprobes against (A) TH, (B) Meis1, (C)Meis2 and (D) Meis3. Immunohistochemistry using antibodies against TH (E, G) and Prep1 (F, H). (A-D) None of the ...

Analysis of Pbx1 mutant mice

In order to investigate the role of Pbx1a in mesDA neurons, we analyzed homologous recombinant mutant mice null for Pbx1[7]. Up to E15.5, when the mutant mice die, mid/hindbrain morphology and the distribution of mesDA neurons appeared normal (Figure (Figure4A,4A, B); however, the mutants showed aberrant mesDA axonal projections. In the E13 whole mount preparations, the wild type mesDA neurons extended their axons deep into the ganglionic eminence [34] (Figure (Figure4C,4C, C’), whereas in Pbx1 null mutants, the DA axons stopped growing at the border between tel- and diencephalon, and defasciculated (Figure (Figure4D,4D, D’). One day later, at E14, some of the Pbx1-deficient mesDA axons reached into the ganglionic eminence (data not shown) but the axonal bundle was loosely packed and a small part of the axons had misrouted at the same position in the ventral forebrain where they had stalled at E13 (Figure (Figure4E,4E, F).

Figure 4
Misrouting of dopaminergic axons in Pbx1-deficient embryos. TH immunohistochemistry on E15 coronal (A, B) and E14 sagittal sections (E, F), and on E13 dissected brains in whole mount preparation (C-D’) of wild type (A, C, E) and Pbx1−/− ...

Recent studies indicated a role of netrin-1/DCC signaling in the guidance of mesDA axons [35,36], thus, we investigated Pbx1 mutant mice for alterations in the expression of netrin-1 and its high affinity receptor DCC[37]. Despite the widespread expression of Pbx1 in the telencephalon, netrin-1 expression in the basal ganglia of E14 Pbx1 mutant appeared normal (Figure (Figure5A,5A, B); instead, expression of its receptor DCC[38] was absent in Pbx1-deficient mesDA neurons (Figure (Figure5E,5E, F) identified by TH immunohistochemistry on the parallel sections (Figure (Figure5C,5C, D). To confirm the absence of DCC in mesDA neurons we performed quantitative PCR on E13 ventral midbrain tissue of Pbx1 mutant mice compared to littermate controls. We found a reduction of approximately 35-40 % in the expression of DCC in the entire ventral midbrain of Pbx1 mutant mice while the expression of netrin-1 was unaltered (Figure (Figure55G).

Figure 5
Netrin-1 and DCC expression in Pbx1 null and wild type embryos. In situ hybridization using digoxigenin-labeled riboprobes against netrin-1 (A, B) and DCC (E, F), immunohistochemistry with antibodies against TH (C, D) on E14 mouse coronal section of wild ...

Analysis of mesencephalic dopaminergic markers in Pbx1 mutants

In order to assess whether Pbx1 deletion leads to the altered expression of other genes associated with mesDA neurons phenotype, concomitantly with the perturbation observed in DCC gene expression, we performed in situ hybridization on E15 embryos using probes specific for Nuclear receptor related 1 (Nurr1)[39], En1, En2[40], LIM homeobox transcription factor 1-beta (Lmx1b)[41], Pituitary homoebox 3 (Pitx3)[42], THDopamine transporter (DAT)Dopa decarboxylase (AADC)Dopamine receptor 2 (DRD2)Ret oncogene (c-ret)Glial cell line-derived neurotrophic factor family receptor alpha 1 (GFR-α1)[43], Aldehyde dehydrogenase family 1 subfamily A1 (Ahd2)[44] and α-synuclein[40]. None of them were altered in Pbx1−/− mutants.

Conversely, the absence of DCC expression in Pbx1-deficient mutant embryos suggested that DCC is a direct target of Pbx1. In order to investigate this hypothesis, we searched for putative Pbx1 binding sites in DCC regulatory region by in silico analysis. Our syntenic alignment of human, rat and mouse genomic sequences 20 kb upstream and 10 kb downstream of the start codon of the DCC gene in combination with the TRANSFAC database weight matrix for the Pbx1 consensus sequence revealed three conserved Pbx1 binding sites in the first intron of DCC at positions A: 775–786, 765–776, 761–772, B: 2059–2067, 2122–2130, 1996–2004 C: 2584–2592, 2645–2653, 2515–2523 bases downstream of the ATG in human, mouse and rat, respectively (data not shown). However no significant DNA enrichment was achieved by chromatin immunoprecipitation (ChIP) either with a specific Pbx1 antibody or with the pan-Pbx antibody (data not shown), indicating that regulation of DCC expression by Pbx1 is probably not direct.


We show here that Pbx1a is expressed in mesDA neurons from E11 into adulthood. During early embryogenesis, its expression in the neural tube is abundant, and becomes later confined in the ventral midbrain to only mesDA neurons. The co-expression of Pbx1a and Prep1 in mesDA neurons suggests that Pbx1 nuclear localization is achieved in this neuronal population through molecular association with Prep1. We, furthermore, show an aberrant mesDA axonal projection in Pbx1−/− embryos, which is likely the result of the loss of DCC expression. However we were not able to demonstrate direct Pbx1 binding on the three highly conserved Pbx1 binding sites in the first intron of DCC by ChIP.

A number of studies have shown molecular interactions between Pbx proteins and several other transcription factors and transcriptional co-regulators. The most studied Pbx partners are the Hox proteins. However, Pbx members form functional heterodimeric complexes with other homeoproteins, such as Engrailed and Pdx1, and other non-homeodomain transcription factors of the basic helix-loop-helix, forkhead and Smad family, as well as with members of the nuclear receptor superfamily [2,6]. Pbx loss of function phenotype is very often correlated to the function of the associated partner. Pbx1-deficient mice die at E15.5, displaying severe hypoplasia (lungs, liver, stomach, gut, kidneys and pancreas), ectopia (thymus and kidneys) or aplasia (spleen, adrenal gland) of multiple organs, and widespread defects of the axial and appendicular skeleton [7]. Although mice with Pbx1 targeted mutation exhibit some degree of homeotic transformations, they do not perfectly resemble mutants for Hox genes, their most studied partners. The same can be said for other Pbx mutants. Pbx3-deficient mice survive to term, but die soon after birth from central respiratory failure [45]. Pbx1 and Pbx3 have overlapping embryonic expression domains and could therefore exhibit redundant functions. In contrast to Pbx1- and Pbx3-deficient mice, Pbx2-deficient mice are viable and display no apparent phenotype despite its broad expression [46]. Therefore the phenotype of the Pbx targeted mutants could be the result of compensatory functions of other Pbx members and/or partial partner-independent functions [2,6].

The phenotypical alterations in mesDA neurons of Pbx1-deficient mice can be considered in correlation to the well-described Engrailed phenotype in these cells. The targeted deletion of both Engrailed genes leads to severe tissue deletion in the mesencephalon and loss of mesDA neurons at birth [40]. A more detailed analysis of these mutant mice revealed that the dopaminergic neurons are generated in the mesencephalic flexure, but die by E14 without extending axonal processes [15]. MesDA neurons in Pbx1-deficent embryos survive beyond E14 and are able to extend axons; a phenotype that seems to diverge from the complete ablation of mesDA neurons observed in Engrailed double mutant embryos. Yet a cooperative function of Engrailed and Pbx1 cannot be excluded on the base of this sole phenotypic resemblance. Engrailed mutation show a gene-dose dependent effect on the survival of mesDA neurons [40] and no information have been reported about the axonal projections of mesDA neurons in other single or compound Engrailed mutants. Furthermore, our analysis does not exclude a redundant effect of other Pbx genes. The presence of Pbx3 mRNA expression in these neurons indicates the possibility of a compensatory effect in absence of Pbx1, therefore restoring the threshold Pbx proteins concentration required for a correct development.

We report here that Pbx1 loss of function leads to defasciculation and misrouting of mesDA axons in the border between di- and telencephalon. Since Pbx1 is expressed in mesDA neurons as well as in the developing target tissue [47], the axonal outgrowth phenotype of Pbx1-deficient mice could reflect alterations in either of the two. The unaltered expression of netrin-1 in the ganglionic eminence, the intact morphology of the tissue and the loss of DCC expression suggest that the mesDA axonal phenotype is likely attributable to a cell-autonomous function of Pbx1.

Several studies suggest that multiple cues collaborate to guide dopaminergic axons into a restricted domain through the diencephalon. Initially, migration of mesDA axons rostrally is determined by repulsion from a posterior source of semaphorin. Once in the diencephalon, mesDA axons are constrained in a narrow path established by multiple signals that keep axons from diverging ventrally or dorsally. The ventral boundary requires both Robo/Slit [48,49] and Netrin/DCC [35,36] opposing actions, as both slits repulsion and netrins attraction actions contribute to prevent dopaminergic axons from crossing the midline. Dorsal repulsion instead is likely mediated by attractive cues only, such as netrin and Sonic hedgehog [35,49-51]. Finally, mesDA projections into the basal forebrain and cortex require an unusual attractive activity of semaphorin [52].

A recent analysis of DCC loss of function in vitro and in vivo demonstrated that DCC regulates neuronal precursor cell migration, axon guidance and axonal terminal arborization [36]. Nevertheless, even in absence of DCC expression, mesDA axons are able to reach their target tissue [36]. Differently from the previous report, however, in Pbx1-deficient embryos, loss of DCC expression has no effect on cell migration and seems to affect only long-range axon guidance. In Pbx1-deficent mice, axonal outgrowth is not affected until the mesDA neurons reach the border region between di- and telencephalon, and only at this point does Pbx1-mediated DCC/netrin signaling seem to be required. Unfortunately, Pbx1 mutant mice die at E15.5, preventing further analysis of the phenotype induced by the loss of DCC expression in these mice. No information is available on the embryonic phenotype of DCC mutants to be compared with those of Pbx1 mutants. Furthermore, analysis at later stages of the basal forebrain structures affected by abnormal nigro-striatal axonal targeting (dorsal striatum, olfactory tubercle, etc…) is not possible in Pbx1-mutants as complete maturation of dopaminergic innervations to the forebrain takes place between E15 and P0 [34,53].

According to the Stein and Tessier-Lavigne ‘Hierarchical organization of guidance receptors’ model [54], activation of DCC by netrin, and concomitantly of Robo by Slit, leads to silencing of the attractive DCC-mediated netrin response without affecting its growth-stimulatory effect. Indeed, both DCC and Robo are expressed in mesDA neurons at developmental stages consistent with the defect observed in Pbx1 mutant embryos and could contribute to the observed phenotype [35,36,49]. Furthermore, a recent study indicated that loss of Slit/Robo signaling leads to widespread errors in mesDA axonal trajectories in the diencephalon, similar to those observed in Pbx1-deficient mice [49].


In this study, we show that Pbx1 and possibly its co-factor Prep1 are part of the transcriptional factor network that control a key step in mesDA neuronal differentiation by regulating the establishment of mesencephalic-striatal axonal projection. The axon guidance pathways are not just important in development of mesDA neurons they may regulate survival of this neuronal population throughout life, as suggested by genetic linkage studies and their connection to sporadic Parkinson’s disease [55,56]. Therefore, Pbx1 may be important in determining the vulnerability of mesDA neurons to degeneration during the early phases of Parkinson’s disease.


Mutant mice

Targeted mutation of Pbx1 and En1tauLacZ mice has previously been described [7,23]. Pbx1+/− and En1+/tlZ adult mice were crossed into a C57/Bl6 background. The colony was maintained at the central animal facility at the University of Heidelberg. Experiments were carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) for the care and use of experimental animals; all procedures were approved by the central animal facility at the University of Heidelberg. Each of the described phenotypes was found in all analyzed mutant animals (n ≥ 4).


All immunohistochemistry, including the whole mount staining, was performed as described [40] using rabbit and sheep anti-TH antibodies (AB152 and AB1542 EMD Millipore Inc., Billerica, MA, USA) at 1:1,000, rabbit anti-pan-Pbx antibody (sc-888 Santa Cruz Biotechnology Inc., Santa Cruz, California, USA) at 1:2,000, rabbit anti-Pbx3 antibody (sc-891 Santa Cruz Santa Cruz Biotechnology Inc., Santa Cruz, California, USA) at 1:1,000, goat anti-ß-galactosidase at 1:10,000 (Arnel Products Co., New York, NY, USA) and mouse anti-Prep1 antibody at 1:200 (05–766 EMD Millipore Inc., Billerica, MA, USA). The pan-Pbx antibody recognizes a common C-terminal peptide in all of the 50 kDa splice variants of Pbx1, Pbx-2 and Pbx3.

Real time PCR

Quantitative PCRs were performed with a Biorad CFX384 system by using preformulated TaqMan Gene expression assays (Invitrogen, Life Technologies Inc., Carlsbad, California, USA) and calculating the results with the comparative Ct method. The assays had the following identification tags: Mm00514509_m1 (DCC), Mm00500896_m1 (netrin-1) and Mm01974474_gH (RPLP0). Dissection of ventral midbrain tissue has been previously described [15]. The dissected ventral midbrains were homogenized, the RNA isolated using the RNeasy Mini kit (Qiagen group, USA) and reverse-transcribed using the VILO Superscript cDNA synthesis kit (Invitrogen, Life Technologies Inc., Carlsbad, California, USA). Each individual PCR was done in three biological replicates.

In silico promoter analysis

Syntenic alignment and analysis of transcription factor binding sites of genomic sequences was performed using ECR Browser and rVista2.0 software (http://www.dcode.org/). For the identification of transcription factor binding sites, rVista2.0 uses a recently developed method, which combines ‘suffix tree’-based fast subsequence search with position weight matrices.


ChIP, chromatin immunoprecipitation; DCC, Deleted in colorectal cancer; E, embryonic day; Exd, Extradenticle; Fgf8, Fibroblast growth factor 8; mesDA, mesencephalic dopaminergic; MEINOX, MEIS and KNOX subclass of the TALE superclass; PBC, PBC domain family of the TALE superclass; Pbx, Pre B-cell leukemia homeobox; PCR, polymerase chain reaction; TALE, three amino acid loop extension; TH, tyrosine hydroxylase.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PS designed and carried out all the experiments, analyzed and interpreted the data, and drafted the final version of the manuscript. EF and DG provided some experiments, and helped with interpretation of the data and writing of the manuscript. YB helped with interpretation of the data and revised the manuscript. HHS conceived of the study, participated in its design and coordination and drafted the manuscript. All authors read and approved the final manuscript.


This work was supported by grants from the German Federal Secretary for Education and Research, BMBF Biofutur 98, the University of Trento and the Michael J. Fox Foundation. We thank Licia Selleri for the Pbx1−/− mice, Martyn Goulding for the En1/tauLacZ mice, Kenneth Campbell and Marc Tessier-Lavigne for the Meis and netrin-1 probes. We also thank Gabi Döderlein and Jiawu Feng for technical help. We thank Francesco Blasi and Luis Fernandez-Diaz for providing us with the Prep1 antibody and Danila Baldessari, Federico Cremisi and Vincenzo Vappavigna for review and critical discussion of the manuscript.


  • Burglin T. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 1997;25:4173–4180. doi: 10.1093/nar/25.21.4173. [PMC free article] [PubMed] [Cross Ref]
  • Laurent A, Bihan R, Omilli F, Deschamps S, Pellerin I. PBX proteins: much more than Hox cofactors. Int J Dev Biol. 2008;52:9–20. doi: 10.1387/ijdb.072304al. [PubMed] [Cross Ref]
  • Lufkin T. Transcriptional control of Hox genes in the vertebrate nervous system. Curr Opin Genet Dev. 1996;6:575–580. doi: 10.1016/S0959-437X(96)80086-4. [PubMed] [Cross Ref]
  • Gemel J, Jacobsen C, MacArthur CA. Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J Biol Chem. 1999;274:6020–6026. doi: 10.1074/jbc.274.9.6020. [PubMed] [Cross Ref]
  • Peifer M, Wieschaus E. Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev. 1990;4:1209–1223. doi: 10.1101/gad.4.7.1209. [PubMed] [Cross Ref]
  • Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol. 2006;291:193–206. doi: 10.1016/j.ydbio.2005.10.032. [PubMed] [Cross Ref]
  • Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS, Rubenstein JL, O’Gorman S, Cleary ML. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development. 2001;128:3543–3557. [PubMed]
  • Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y, Cleary ML. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet. 2002;30:430–435. doi: 10.1038/ng860. [PubMed] [Cross Ref]
  • Schnabel C, Selleri L, Cleary M. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis. 2003;37:123–130. doi: 10.1002/gene.10235. [PubMed] [Cross Ref]
  • Schnabel C, Godin R, Cleary M. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol. 2003;254:262–276. doi: 10.1016/S0012-1606(02)00038-6. [PubMed] [Cross Ref]
  • Manley NR, Selleri L, Brendolan A, Gordon J, Cleary ML. Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev Biol. 2004;276:301–312. doi: 10.1016/j.ydbio.2004.08.030. [PubMed] [Cross Ref]
  • Brendolan A, Ferretti E, Salsi V, Moses K, Quaggin S, Blasi F, Cleary ML, Selleri L. A Pbx1-dependent genetic and transcriptional network regulates spleen ontogeny. Development. 2005;132:3113–3126. doi: 10.1242/dev.01884. [PubMed] [Cross Ref]
  • DiMartino J, Selleri L, Traver D, Firpo M, Rhee J, Warnke R, O’Gorman S, Weissman I, Cleary M. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood. 2001;98:618–626. doi: 10.1182/blood.V98.3.618. [PubMed] [Cross Ref]
  • Sgadò P, Albéri L, Gherbassi D, Galasso SL, Ramakers GMJ, Alavian KN, Smidt MP, Dyck RH, Simon HH. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci USA. 2006;103:15242–15247. doi: 10.1073/pnas.0602116103. [PMC free article] [PubMed] [Cross Ref]
  • Albéri L, Sgadò P, Simon HH. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development. 2004;131:3229–3236. doi: 10.1242/dev.01128. [PubMed] [Cross Ref]
  • Davis CA, Joyner AL. Expression patterns of the homeo box-containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev. 1988;2:1736–1744. doi: 10.1101/gad.2.12b.1736. [PubMed] [Cross Ref]
  • Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science. 1991;251:1239–1243. doi: 10.1126/science.1672471. [PubMed] [Cross Ref]
  • Gosgnach S, Lanuza GM, Butt SJB, Saueressig H, Zhang Y, Velasquez T, Riethmacher D, Callaway EM, Kiehn O, Goulding M. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature. 2006;440:215–219. doi: 10.1038/nature04545. [PubMed] [Cross Ref]
  • Liu A, Joyner AL. EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development. 2001;128:181–191. [PubMed]
  • Alavian KN, Scholz C, Simon HH. Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord. 2008;23:319–328. doi: 10.1002/mds.21640. [PubMed] [Cross Ref]
  • Erickson T, Scholpp S, Brand M, Moens CB, Waskiewicz AJ. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Dev Biol. 2007;301:504–517. doi: 10.1016/j.ydbio.2006.08.022. [PMC free article] [PubMed] [Cross Ref]
  • Wagner K, Mincheva A, Korn B, Lichter P, Popperl H. Pbx4, a new Pbx family member on mouse chromosome 8, is expressed during spermatogenesis. Mech Dev. 2001;103:127–131. doi: 10.1016/S0925-4773(01)00349-5. [PubMed] [Cross Ref]
  • Saueressig H, Burrill J, Goulding M. Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development. 1999;126:4201–4212. [PubMed]
  • Capdevila J, Tsukui T, Rodriquez Esteban C, Zappavigna V, Izpisua Belmonte JC. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol Cell. 1999;4:839–849. doi: 10.1016/S1097-2765(00)80393-7. [PubMed] [Cross Ref]
  • Gonzalez-Crespo S, Morata G. Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development. 1996;122:3921–3928. [PubMed]
  • Morata G. How Drosophila appendages develop. Nat Rev Mol Cell Biol. 2001;2:89–97. [PubMed]
  • Ryoo HD, Marty T, Casares F, Affolter M, Mann RS. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development. 1999;126:5137–5148. [PubMed]
  • Abu-Shaar M, Ryoo H, Mann R. Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev. 1999;13:935–945. doi: 10.1101/gad.13.8.935. [PMC free article] [PubMed] [Cross Ref]
  • Berthelsen J, Kilstrup-Nielsen C, Blasi F, Mavilio F, Zappavigna V. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev. 1999;13:946–953. doi: 10.1101/gad.13.8.946. [PMC free article] [PubMed] [Cross Ref]
  • Mercader N, Leonardo E, Azpiazu N, Serrano A, Morata G, Martinez C, Torres M. Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature. 1999;402:425–429. doi: 10.1038/46580. [PubMed] [Cross Ref]
  • Jaw TJ, You LR, Knoepfler PS, Yao LC, Pai CY, Tang CY, Chang LP, Berthelsen J, Blasi F, Kamps MP, Sun YH. Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function. Mech Dev. 2000;91:279–291. doi: 10.1016/S0925-4773(99)00316-0. [PubMed] [Cross Ref]
  • Kilstrup-Nielsen C, Alessio M, Zappavigna V. PBX1 nuclear export is regulated independently of PBX-MEINOX interaction by PKA phosphorylation of the PBC-B domain. EMBO J. 2003;22:89–99. doi: 10.1093/emboj/cdg010. [PMC free article] [PubMed] [Cross Ref]
  • Toresson H, Parmar M, Campbell K. Expression of Meis and Pbx genes and their protein products in the developing telencephalon: implications for regional differentiation. Mech Dev. 2000;94:183–187. doi: 10.1016/S0925-4773(00)00324-5. [PubMed] [Cross Ref]
  • Hu Z, Cooper M, Crockett D, Zhou R. Differentiation of the midbrain dopaminergic pathways during mouse development. J Comp Neurol. 2004;476:301–311. doi: 10.1002/cne.20230. [PubMed] [Cross Ref]
  • Lin L, Rao Y, Isacson O. Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Mol Cell Neurosci. 2005;28:547–555. doi: 10.1016/j.mcn.2004.11.009. [PubMed] [Cross Ref]
  • Xu B, Goldman JS, Rymar VV, Forget C, Lo PS, Bull SJ, Vereker E, Barker PA, Trudeau LE, Sadikot AF, Kennedy TE. Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. Neuroscience. 2010;169:932–949. doi: 10.1016/j.neuroscience.2010.05.025. [PubMed] [Cross Ref]
  • Kennedy TE. Cellular mechanisms of netrin function: long-range and short-range actions. Biochem Cell Biol. 2000;78:569–575. doi: 10.1139/o00-079. [PubMed] [Cross Ref]
  • Livesey FJ, Hunt SP. Netrin and netrin receptor expression in the embryonic mammalian nervous system suggests roles in retinal, striatal, nigral, and cerebellar development. Mol Cell Neurosci. 1997;8:417–429. doi: 10.1006/mcne.1997.0598. [PubMed] [Cross Ref]
  • Zetterstrom RH, Williams R, Perlmann T, Olson L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res. 1996;41:111–120. [PubMed]
  • Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21:3126–3134. [PubMed]
  • Smidt M, Asbreuk C, Cox J, Chen H, Johnson R, Burbach J. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci. 2000;3:337–341. doi: 10.1038/73902. [PubMed] [Cross Ref]
  • Smidt M, Van Schaick H, Lanctot C, Tremblay J, Cox J, Van DKA, Wolterink G, Drouin J, Burbach J. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A. 1997;94:13305–13310. doi: 10.1073/pnas.94.24.13305. [PMC free article] [PubMed] [Cross Ref]
  • Nosrat C, Tomac A, Hoffer B, Olson L. Cellular and developmental patterns of expression of Ret and glial cell line-derived neurotrophic factor receptor alpha mRNAs. Exp Brain Res. 1997;115:410–422. doi: 10.1007/PL00005711. [PubMed] [Cross Ref]
  • McCaffery P, Drager UC. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci U S A. 1994;91:7772–7776. doi: 10.1073/pnas.91.16.7772. [PMC free article] [PubMed] [Cross Ref]
  • Rhee JW, Arata A, Selleri L, Jacobs Y, Arata S, Onimaru H, Cleary ML. Pbx3 deficiency results in central hypoventilation. Am J Pathol. 2004;165:1343–1350. doi: 10.1016/S0002-9440(10)63392-5. [PMC free article] [PubMed] [Cross Ref]
  • Selleri L, DiMartino J, van Deursen J, Brendolan A, Sanyal M, Boon E, Capellini T, Smith KS, Rhee J, Pöpperl H, Grosveld G, Cleary ML. The TALE homeodomain protein Pbx2 is not essential for development and long-term survival. Mol Cell Biol. 2004;24:5324–5331. doi: 10.1128/MCB.24.12.5324-5331.2004. [PMC free article] [PubMed] [Cross Ref]
  • Roberts V, van Dijk M, Murre C. Localization of Pbx1 transcripts in developing rat embryos. Mech Dev. 1995;51:193–198. doi: 10.1016/0925-4773(95)00364-9. [PubMed] [Cross Ref]
  • Bagri A, Marín O, Plump AS, Mak J, Pleasure SJ, Rubenstein JLR, Tessier-Lavigne M. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron. 2002;33:233–248. doi: 10.1016/S0896-6273(02)00561-5. [PubMed] [Cross Ref]
  • Dugan JP, Stratton A, Riley HP, Farmer WT, Mastick GS. Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals. Mol Cell Neurosci. 2011;46:347–356. doi: 10.1016/j.mcn.2010.11.003. [PMC free article] [PubMed] [Cross Ref]
  • Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci. 2004;24:4889–4893. doi: 10.1523/JNEUROSCI.0468-04.2004. [PubMed] [Cross Ref]
  • Hammond R, Blaess S, Abeliovich A. Sonic hedgehog is a chemoattractant for midbrain dopaminergic axons. PLoS One. 2009;4:e7007. doi: 10.1371/journal.pone.0007007. [PMC free article] [PubMed] [Cross Ref]
  • Kolk SM, Gunput R-AF, Tran TS, van den Heuvel DMA, Prasad AA, Hellemons AJCGM, Adolfs Y, Ginty DD, Kolodkin AL, Burbach JPH, Smidt MP, Pasterkamp RJ. Semaphorin 3 F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci. 2009;29:12542–12557. doi: 10.1523/JNEUROSCI.2521-09.2009. [PMC free article] [PubMed] [Cross Ref]
  • Vives J, Sasajala P, Chang KH, Zhao S, Li M. A mouse model for tracking nigrostriatal dopamine neuron axon growth. Genesis. 2008;46:125–131. doi: 10.1002/dvg.20375. [PubMed] [Cross Ref]
  • Stein E, Tessier-Lavigne M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science. 2001;291:1928–1938. doi: 10.1126/science.1058445. [PubMed] [Cross Ref]
  • Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 2007;3:e98. doi: 10.1371/journal.pgen.0030098. [PMC free article] [PubMed] [Cross Ref]
  • Lin L, Lesnick TG, Maraganore DM, Isacson O. Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci. 2009;32:142–149. doi: 10.1016/j.tins.2008.11.006. [PMC free article] [PubMed] [Cross Ref]

Articles from Neural Development are provided here courtesy of BioMed Central
PubReader format: click here to try


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...