Logo of narLink to Publisher's site
Nucleic Acids Res. Mar 11, 1987; 15(5): 2251–2260.
PMCID: PMC340631

The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins.


Recent work suggests that one or more members of the highly repeated LINE-1 (L1) DNA family found in all mammals may encode one or more proteins. Here we report the sequence of a portion of an L1 cloned from the domestic cat (Felis catus). These data permit comparison of the L1 sequences in four mammalian orders (Carnivore, Lagomorph, Rodent and Primate) and the comparison supports the suggested coding potential. In two separate, noncontiguous regions in the carboxy terminal half of the proteins predicted from the DNA sequences, there are several strongly conserved segments. In one region, these share homology with known or suspected reverse transcriptases, as described by others in rodents and primates. In the second region, closer to the carboxy terminus, the strongly conserved segments are over 90% homologous among the four orders. One of the latter segments is cysteine rich and resembles the putative metal binding domains of nucleic acid binding proteins, including those of TFIIIA and retroviruses.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (812K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA., 3rd The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 1986 Jan;6(1):168–182. [PMC free article] [PubMed]
  • Hattori M, Kuhara S, Takenaka O, Sakaki Y. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature. 1986 Jun 5;321(6070):625–628. [PubMed]
  • Temin HM. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. Mol Biol Evol. 1985 Nov;2(6):455–468. [PubMed]
  • Rogers JH. The origin and evolution of retroposons. Int Rev Cytol. 1985;93:187–279. [PubMed]
  • Skowronski J, Singer MF. Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6050–6054. [PMC free article] [PubMed]
  • Singer MF, Thayer RE, Grimaldi G, Lerman MI, Fanning TG. Homology between the KpnI primate and BamH1 (M1F-1) rodent families of long interspersed repeated sequences. Nucleic Acids Res. 1983 Aug 25;11(16):5739–5745. [PMC free article] [PubMed]
  • Soares MB, Schon E, Efstratiadis A. Rat LINE1: the origin and evolution of a family of long interspersed middle repetitive DNA elements. J Mol Evol. 1985;22(2):117–133. [PubMed]
  • Demers GW, Brech K, Hardison RC. Long interspersed L1 repeats in rabbit DNA are homologous to L1 repeats of rodents and primates in an open-reading-frame region. Mol Biol Evol. 1986 May;3(3):179–190. [PubMed]
  • Burton FH, Loeb DD, Voliva CF, Martin SL, Edgell MH, Hutchison CA., 3rd Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol. 1986 Jan 20;187(2):291–304. [PubMed]
  • Katzir N, Rechavi G, Cohen JB, Unger T, Simoni F, Segal S, Cohen D, Givol D. "Retroposon" insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1054–1058. [PMC free article] [PubMed]
  • Berg JM. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. [PubMed]
  • Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. [PMC free article] [PubMed]
  • Howard DK, Schlom J. Isolation of host-range variants of mouse mammary tumor viruses that efficiently infect cells in vitro. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5718–5722. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Lakshmikumaran MS, D'Ambrosio E, Laimins LA, Lin DT, Furano AV. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus. Mol Cell Biol. 1985 Sep;5(9):2197–2203. [PMC free article] [PubMed]
  • Martin SL, Voliva CF, Burton FH, Edgell MH, Hutchison CA., 3rd A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2308–2312. [PMC free article] [PubMed]
  • Hattori M, Hidaka S, Sakaki Y. Sequence analysis of a KpnI family member near the 3' end of human beta-globin gene. Nucleic Acids Res. 1985 Nov 11;13(21):7813–7827. [PMC free article] [PubMed]
  • Sharp PA. Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes. Nature. 1983 Feb 10;301(5900):471–472. [PubMed]
  • Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985 Mar;40(3):491–500. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...