• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jun 11, 1992; 20(11): 2861–2864.
PMCID: PMC336933

RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain.

Abstract

Sequence analysis has shown that there is a short motif of 8 amino acids, corresponding to the RNP-1 motif found in canonical RNA-binding domains, which is common to two families of apparently unrelated proteins. Many RNA-binding proteins contain the RNP-1 and RNP-2 motifs in an RNA-binding domain. The cold shock domain (CSD) family of proteins, which includes several transcription factors which have been shown to bind to DNA, has now been identified to contain a motif similar to RNP-1. A non-redundant protein sequence database was searched with regular expressions and with a weight/residue position matrix of the RNP-1 motif resulting in the identification of numerous known members of the RNA-binding family of proteins. In addition, the search identified that the CSD-containing family of proteins includes a motif which is almost identical to the RNP-1 motif. A determination of the statistical significance of this analysis showed that the RNP-1 motifs from these two families of proteins are indeed similar.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (605K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bandziulis RJ, Swanson MS, Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. [PubMed]
  • Mattaj IW. A binding consensus: RNA-protein interactions in splicing, snRNPs, and sex. Cell. 1989 Apr 7;57(1):1–3. [PubMed]
  • Zamore PD, Zapp ML, Green MR. Gene expression. RNA binding: beta s and basics. Nature. 1990 Dec 6;348(6301):485–486. [PubMed]
  • Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell. 1991 Nov 1;67(3):629–639. [PubMed]
  • Ge H, Zuo P, Manley JL. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell. 1991 Jul 26;66(2):373–382. [PubMed]
  • Krainer AR, Mayeda A, Kozak D, Binns G. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell. 1991 Jul 26;66(2):383–394. [PubMed]
  • Gil A, Sharp PA, Jamison SF, Garcia-Blanco MA. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 1991 Jul;5(7):1224–1236. [PubMed]
  • Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner JB, Furneaux HM. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell. 1991 Oct 18;67(2):325–333. [PubMed]
  • Robinow S, Campos AR, Yao KM, White K. The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science. 1988 Dec 16;242(4885):1570–1572. [PubMed]
  • Bell LR, Maine EM, Schedl P, Cline TW. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell. 1988 Dec 23;55(6):1037–1046. [PubMed]
  • Amrein H, Maniatis T, Nöthiger R. Alternatively spliced transcripts of the sex-determining gene tra-2 of Drosophila encode functional proteins of different size. EMBO J. 1990 Nov;9(11):3619–3629. [PMC free article] [PubMed]
  • Seeger MA, Kaufman TC. Molecular analysis of the bicoid gene from Drosophila pseudoobscura: identification of conserved domains within coding and noncoding regions of the bicoid mRNA. EMBO J. 1990 Sep;9(9):2977–2987. [PMC free article] [PubMed]
  • Rebagliati M. An RNA recognition motif in the bicoid protein. Cell. 1989 Jul 28;58(2):231–232. [PubMed]
  • Minvielle-Sebastia L, Winsor B, Bonneaud N, Lacroute F. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol. 1991 Jun;11(6):3075–3087. [PMC free article] [PubMed]
  • Murray MT, Schiller DL, Franke WW. Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):11–15. [PMC free article] [PubMed]
  • La Teana A, Brandi A, Falconi M, Spurio R, Pon CL, Gualerzi CO. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10907–10911. [PMC free article] [PubMed]
  • Karlin S, Altschul SF. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2264–2268. [PMC free article] [PubMed]
  • Altschul SF. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol. 1991 Jun 5;219(3):555–565. [PubMed]
  • Merrill BM, Stone KL, Cobianchi F, Wilson SH, Williams KR. Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. J Biol Chem. 1988 Mar 5;263(7):3307–3313. [PubMed]
  • Brennan CA, Platt T. Mutations in an RNP1 consensus sequence of Rho protein reduce RNA binding affinity but facilitate helicase turnover. J Biol Chem. 1991 Sep 15;266(26):17296–17305. [PubMed]
  • Schwemmle M, Görlach M, Bader M, Sarre TF, Hilse K. Binding of mRNA by an oligopeptide containing an evolutionarily conserved sequence from RNA binding proteins. FEBS Lett. 1989 Jul 17;251(1-2):117–120. [PubMed]
  • Nagai K, Oubridge C, Jessen TH, Li J, Evans PR. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. [PubMed]
  • Hoffman DW, Query CC, Golden BL, White SW, Keene JD. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495–2499. [PMC free article] [PubMed]
  • Ozer J, Faber M, Chalkley R, Sealy L. Isolation and characterization of a cDNA clone for the CCAAT transcription factor EFIA reveals a novel structural motif. J Biol Chem. 1990 Dec 25;265(36):22143–22152. [PubMed]
  • Didier DK, Schiffenbauer J, Woulfe SL, Zacheis M, Schwartz BD. Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7322–7326. [PMC free article] [PubMed]
  • Tafuri SR, Wolffe AP. Xenopus Y-box transcription factors: molecular cloning, functional analysis and developmental regulation. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9028–9032. [PMC free article] [PubMed]
  • Wistow G. Cold shock and DNA binding. Nature. 1990 Apr 26;344(6269):823–824. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...