• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jul 25, 1992; 20(14): 3639–3644.
PMCID: PMC334012

Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.

Abstract

We have used the polymerase chain reaction to isolate fragments of Ty1-copia group retrotransposons from a wide variety of members of the higher plant kingdom. 56 out of 57 species tested generate an amplified fragment of the size expected for reverse transcriptase fragments of Ty1-copia group retrotransposons. Sequence analysis of subclones shows that the PCR fragments display varying degrees of sequence heterogeneity. Sequence heterogeneity therefore seems a general property of Ty1-copia group retrotransposons of higher plants, in contrast to the limited diversity seen in retrotransposons of Saccharomyces cerevisiae and Drosophila melanogaster. Phylogenetic analysis of all these sequences shows, with some significant exceptions, that the degree of sequence divergence in the retrotransposon populations between any pair of species is proportional to the evolutionary distance between those species. This implies that sequence divergence during vertical transmission of Ty1-copia group retrotransposons within plant lineages has been a major factor in the evolution of Ty1-copia group retrotransposons in higher plants. Additionally, we suggest that horizontal transmission of this transposon group between different species has also played a role in this process.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Grandbastien MA. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. [PubMed]
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. [PMC free article] [PubMed]
  • Flavell AJ, Smith DB, Kumar A. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 1992 Jan;231(2):233–242. [PubMed]
  • Mount SM, Rubin GM. Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol. 1985 Jul;5(7):1630–1638. [PMC free article] [PubMed]
  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K. The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature. 315(6022):773–776. [PubMed]
  • Flavell AJ, Levis R, Simon MA, Rubin GM. The 5' termini of RNAs encoded by the transposable element copia. Nucleic Acids Res. 1981 Dec 11;9(23):6279–6291. [PMC free article] [PubMed]
  • Yuki S, Ishimaru S, Inouye S, Saigo K. Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons, 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes. Nucleic Acids Res. 1986 Apr 11;14(7):3017–3030. [PMC free article] [PubMed]
  • Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. [PMC free article] [PubMed]
  • Konieczny A, Voytas DF, Cummings MP, Ausubel FM. A superfamily of Arabidopsis thaliana retrotransposons. Genetics. 1991 Apr;127(4):801–809. [PMC free article] [PubMed]
  • Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989 Jan 26;337(6205):376–380. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. [PubMed]
  • Feng DF, Doolittle RF. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. [PubMed]
  • Doolittle RF, Feng DF. Nearest neighbor procedure for relating progressively aligned amino acid sequences. Methods Enzymol. 1990;183:659–669. [PubMed]
  • Flavell AJ, Smith DB. A Ty1-copia group retrotransposon sequence in a vertebrate. Mol Gen Genet. 1992 May;233(1-2):322–326. [PubMed]
  • Charlesworth B. Genetic divergence between transposable elements. Genet Res. 1986 Oct;48(2):111–118. [PubMed]
  • Gojobori T, Moriyama EN, Kimura M. Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10015–10018. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...