Logo of narLink to Publisher's site
Nucleic Acids Res. 1991 Apr 11; 19(7): 1619–1626.
PMCID: PMC333924

Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification.


Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Okimoto R, Macfarlane JL, Wolstenholme DR. Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res. 1990 Oct 25;18(20):6113–6118. [PMC free article] [PubMed]
  • Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. [PubMed]
  • Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. [PubMed]
  • Fauron CM, Wolstenholme DR. Structural heterogeneity of mitochondrial DNA molecules within the genus Drosophila. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3623–3627. [PMC free article] [PubMed]
  • Boyce TM, Zwick ME, Aquadro CF. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics. 1989 Dec;123(4):825–836. [PMC free article] [PubMed]
  • Clayton DA. Replication of animal mitochondrial DNA. Cell. 1982 Apr;28(4):693–705. [PubMed]
  • Clayton DA. Transcription of the mammalian mitochondrial genome. Annu Rev Biochem. 1984;53:573–594. [PubMed]
  • Rand DM, Harrison RG. Molecular population genetics of mtDNA size variation in crickets. Genetics. 1989 Mar;121(3):551–569. [PMC free article] [PubMed]
  • Densmore LD, Wright JW, Brown WM. Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics. 1985 Aug;110(4):689–707. [PMC free article] [PubMed]
  • Bentzen P, Leggett WC, Brown GG. Length and restriction site heteroplasmy in the mitochondrial DNA of american shad (alosa sapidissima). Genetics. 1988 Mar;118(3):509–518. [PMC free article] [PubMed]
  • Buroker NE, Brown JR, Gilbert TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics. 1990 Jan;124(1):157–163. [PMC free article] [PubMed]
  • Roe BA, Ma DP, Wilson RK, Wong JF. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed]
  • La Roche J, Snyder M, Cook DI, Fuller K, Zouros E. Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol. 1990 Jan;7(1):45–64. [PubMed]
  • Moritz C, Brown WM. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science. 1986 Sep 26;233(4771):1425–1427. [PubMed]
  • Moritz C, Brown WM. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7183–7187. [PMC free article] [PubMed]
  • Wallis GP. Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus complex. Heredity (Edinb) 1987 Apr;58(Pt 2):229–238. [PubMed]
  • Hyman BC, Beck JL, Weiss KC. Sequence amplification and gene rearrangement in parasitic nematode mitochondrial DNA. Genetics. 1988 Nov;120(3):707–712. [PMC free article] [PubMed]
  • Wolstenholme DR, Fauron CM. A partial map of the circular mitochondrial genome of Drosophila melanogaster. Location of EcoRI-sensitive sites and the adenine-thymine-rich region. J Cell Biol. 1976 Nov;71(2):434–448. [PMC free article] [PubMed]
  • Wahleithner JA, Wolstenholme DR. Mitochondrial plasmid DNAs of broad bean: nucleotide sequences, complex secondary structures, and transcription. Curr Genet. 1987;12(1):55–67. [PubMed]
  • Okimoto R, Wolstenholme DR. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J. 1990 Oct;9(10):3405–3411. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Dale RM, McClure BA, Houchins JP. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid. 1985 Jan;13(1):31–40. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...