• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of nihpaAbout Author manuscriptsSubmit a manuscriptNIH Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
Nat Commun. Author manuscript; available in PMC Apr 24, 2012.
Published in final edited form as:
Published online Oct 4, 2011. doi:  10.1038/ncomms1503
PMCID: PMC3335196
NIHMSID: NIHMS361029

Reprogramming within hours following nuclear transfer into mouse but not human zygotes

Abstract

Fertilized mouse zygotes can reprogram somatic cells to a pluripotent state. Human zygotes might therefore be useful for producing patient-derived pluripotent stem cells. However, logistical, legal and social considerations have limited the availability of human eggs for research. Here we show that a significant number of normal fertilized eggs (zygotes) can be obtained for reprogramming studies. Using these zygotes, we found that when the zygotic genome was replaced with that of a somatic cell, development progressed normally throughout the cleavage stages, but then arrested before the morula stage. This arrest was associated with a failure to activate transcription in the transferred somatic genome. In contrast to human zygotes, mouse zygotes reprogrammed the somatic cell genome to a pluripotent state within hours after transfer. Our results suggest that there is a previously unappreciated barrier to successful human nuclear transfer, and that future studies should focus on the requirements for genome activation.

Keywords: zygote, reprogramming, mitosis, zygotic genome activation
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...