• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Oct 11, 1994; 22(20): 4167–4175.
PMCID: PMC331910

Genetic Bit Analysis: a solid phase method for typing single nucleotide polymorphisms.

Abstract

A new method for typing single nucleotide polymorphisms in DNA is described. In this method, specific fragments of genomic DNA containing the polymorphic site(s) are first amplified by the polymerase chain reaction (PCR) using one regular and one phosphorothioate-modified primer. The double-stranded PCR product is rendered single-stranded by treatment with the enzyme T7 gene 6 exonuclease, and captured onto individual wells of a 96 well polystyrene plate by hybridization to an immobilized oligonucleotide primer. This primer is designed to hybridize to the single-stranded target DNA immediately adjacent from the polymorphic site of interest. Using the Klenow fragment of E. coli DNA polymerase I or the modified T7 DNA polymerase (Sequenase), the 3' end of the capture oligonucleotide is extended by one base using a mixture of one biotin-labeled, one fluorescein-labeled, and two unlabeled dideoxynucleoside triphosphates. Antibody conjugates of alkaline phosphatase and horseradish peroxidase are then used to determine the nature of the extended base in an ELISA format. This paper describes biochemical features of this method in detail. A semi-automated version of the method, which we call Genetic Bit Analysis (GBA), is being used on a large scale for the parentage verification of thoroughbred horses using a predetermined set of 26 diallelic polymorphisms in the equine genome.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Cooper DN, Smith BA, Cooke HJ, Niemann S, Schmidtke J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet. 1985;69(3):201–205. [PubMed]
  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. [PubMed]
  • Wilson JT, Marotta CA, Forget BG, Weissman SM. Structure of human hemoglobin messenger RNA and its relation to hemoglobinopathies. Trans Assoc Am Physicians. 1977;90:117–126. [PubMed]
  • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. [PubMed]
  • Sung CH, Davenport CM, Hennessey JC, Maumenee IH, Jacobson SG, Heckenlively JR, Nowakowski R, Fishman G, Gouras P, Nathans J. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6481–6485. [PMC free article] [PubMed]
  • Dryja TP, Hahn LB, Cowley GS, McGee TL, Berson EL. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9370–9374. [PMC free article] [PubMed]
  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed]
  • Myers RM, Maniatis T, Lerman LS. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:501–527. [PubMed]
  • Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991 Aug;1(1):34–38. [PubMed]
  • Myers RM, Larin Z, Maniatis T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. 1985 Dec 13;230(4731):1242–1246. [PubMed]
  • Cotton RG, Rodrigues NR, Campbell RD. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4397–4401. [PMC free article] [PubMed]
  • Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci U S A. 1983 Jan;80(1):278–282. [PMC free article] [PubMed]
  • Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6230–6234. [PMC free article] [PubMed]
  • Landegren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. [PubMed]
  • Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8923–8927. [PMC free article] [PubMed]
  • Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189–193. [PMC free article] [PubMed]
  • Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2757–2760. [PMC free article] [PubMed]
  • Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. [PMC free article] [PubMed]
  • Syvänen AC, Aalto-Setälä K, Harju L, Kontula K, Söderlund H. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics. 1990 Dec;8(4):684–692. [PubMed]
  • Kuppuswamy MN, Hoffmann JW, Kasper CK, Spitzer SG, Groce SL, Bajaj SP. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1143–1147. [PMC free article] [PubMed]
  • Nyrén P, Pettersson B, Uhlén M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem. 1993 Jan;208(1):171–175. [PubMed]
  • Ugozzoli L, Wahlqvist JM, Ehsani A, Kaplan BE, Wallace RB. Detection of specific alleles by using allele-specific primer extension followed by capture on solid support. Genet Anal Tech Appl. 1992 Aug;9(4):107–112. [PubMed]
  • Syvänen AC, Sajantila A, Lukka M. Identification of individuals by analysis of biallelic DNA markers, using PCR and solid-phase minisequencing. Am J Hum Genet. 1993 Jan;52(1):46–59. [PMC free article] [PubMed]
  • Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. [PubMed]
  • Nikiforov TT, Rendle RB, Kotewicz ML, Rogers YH. The use of phosphorothioate primers and exonuclease hydrolysis for the preparation of single-stranded PCR products and their detection by solid-phase hybridization. PCR Methods Appl. 1994 Apr;3(5):285–291. [PubMed]
  • Balaguer P, Térouanne B, Allibert P, Cros P, Boussioux AM, Mandrand B, Nicolas JC. Detection of single base substitutions in polynucleotides by capture with immobilized oligonucleotides. Mol Cell Probes. 1993 Apr;7(2):155–159. [PubMed]
  • Bromberg LE, Klibanov AM. Detergent-enabled transport of proteins and nucleic acids through hydrophobic solvents. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):143–147. [PMC free article] [PubMed]
  • Gyllensten UB, Erlich HA. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. [PMC free article] [PubMed]
  • Tabor S, Richardson CC. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem. 1989 Apr 15;264(11):6447–6458. [PubMed]
  • Goodman MF, Creighton S, Bloom LB, Petruska J. Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. 1993;28(2):83–126. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...