Logo of narLink to Publisher's site
Nucleic Acids Res. 1993 Jul 25; 21(15): 3501–3505.
PMCID: PMC331451

Human snRNP polypeptide D1 promotes pre-mRNA splicing in yeast and defines nonessential yeast Smd1p sequences.


Parallel investigations of yeast and metazoan pre-mRNA splicing have documented enormous complexity in the nucleic acid and protein components of the cellular splicing apparatus, the spliceosome. The degree to which yeast and metazoan spliceosomal proteins differ in composition and structure is currently unknown. In this report we demonstrate that the human small nuclear ribonucleoprotein (snRNP) polypeptide D1 complements the cell lethality, splicing deficiency, and snRNA instability phenotypes associated with a yeast smd1 null allele. Mutational analysis of yeast SMD1, guided by a comparison of the predicted yeast and human proteins, reveals that a large, nonconserved portion of Smd1p is dispensable for biological activity. These observations firmly establish D1 as an essential component of the cellular splicing apparatus and suggest that yeast and metazoa are remarkably similar in the polypeptides guiding early snRNP assembly.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Lührmann R, Kastner B, Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta. 1990 Nov 30;1087(3):265–292. [PubMed]
  • Zieve GW, Sauterer RA. Cell biology of the snRNP particles. Crit Rev Biochem Mol Biol. 1990;25(1):1–46. [PubMed]
  • Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G. Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell. 1985 Oct;42(3):751–758. [PubMed]
  • Sauterer RA, Goyal A, Zieve GW. Cytoplasmic assembly of small nuclear ribonucleoprotein particles from 6 S and 20 S RNA-free intermediates in L929 mouse fibroblasts. J Biol Chem. 1990 Jan 15;265(2):1048–1058. [PubMed]
  • Guthrie C, Patterson B. Spliceosomal snRNAs. Annu Rev Genet. 1988;22:387–419. [PubMed]
  • Liautard JP, Sri-Widada J, Brunel C, Jeanteur P. Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs. J Mol Biol. 1982 Dec 15;162(3):623–643. [PubMed]
  • Heinrichs V, Hackl W, Lührmann R. Direct binding of small nuclear ribonucleoprotein G to the Sm site of small nuclear RNA. Ultraviolet light cross-linking of protein G to the AAU stretch within the Sm site (AAUUUGUGG) of U1 small nuclear ribonucleoprotein reconstituted in vitro. J Mol Biol. 1992 Sep 5;227(1):15–28. [PubMed]
  • Fischer U, Sumpter V, Sekine M, Satoh T, Lührmann R. Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J. 1993 Feb;12(2):573–583. [PMC free article] [PubMed]
  • Wersig C, Bindereif A. Reconstitution of functional mammalian U4 small nuclear ribonucleoprotein: Sm protein binding is not essential for splicing in vitro. Mol Cell Biol. 1992 Apr;12(4):1460–1468. [PMC free article] [PubMed]
  • Riedel N, Wolin S, Guthrie C. A subset of yeast snRNA's contains functional binding sites for the highly conserved Sm antigen. Science. 1987 Jan 16;235(4786):328–331. [PubMed]
  • Tollervey D, Mattaj IW. Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U-snRNPs. EMBO J. 1987 Feb;6(2):469–476. [PMC free article] [PubMed]
  • Hughes JM, Konings DA, Cesareni G. The yeast homologue of U3 snRNA. EMBO J. 1987 Jul;6(7):2145–2155. [PMC free article] [PubMed]
  • Siliciano PG, Jones MH, Guthrie C. Saccharomyces cerevisiae has a U1-like small nuclear RNA with unexpected properties. Science. 1987 Sep 18;237(4821):1484–1487. [PubMed]
  • Jones MH, Guthrie C. Unexpected flexibility in an evolutionarily conserved protein-RNA interaction: genetic analysis of the Sm binding site. EMBO J. 1990 Aug;9(8):2555–2561. [PMC free article] [PubMed]
  • Shuster EO, Guthrie C. Human U2 snRNA can function in pre-mRNA splicing in yeast. Nature. 1990 May 17;345(6272):270–273. [PubMed]
  • Rymond BC. Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):848–852. [PMC free article] [PubMed]
  • Blanton S, Srinivasan A, Rymond BC. PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol Cell Biol. 1992 Sep;12(9):3939–3947. [PMC free article] [PubMed]
  • Rose M, Botstein D. Structure and function of the yeast URA3 gene. Differentially regulated expression of hybrid beta-galactosidase from overlapping coding sequences in yeast. J Mol Biol. 1983 Nov 15;170(4):883–904. [PubMed]
  • Rokeach LA, Haselby JA, Hoch SO. Overproduction of a human snRNP-associated Sm-D autoantigen in Escherichia coli and Saccharomyces cerevisiae. Gene. 1992 Sep 10;118(2):247–253. [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Pikielny CW, Rosbash M. mRNA splicing efficiency in yeast and the contribution of nonconserved sequences. Cell. 1985 May;41(1):119–126. [PubMed]
  • Andersen J, Zieve GW. Assembly and intracellular transport of snRNP particles. Bioessays. 1991 Feb;13(2):57–64. [PubMed]
  • Bennett M, Michaud S, Kingston J, Reed R. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Dev. 1992 Oct;6(10):1986–2000. [PubMed]
  • Anderson GJ, Bach M, Lührmann R, Beggs JD. Conservation between yeast and man of a protein associated with U5 small nuclear ribonucleoprotein. Nature. 1989 Dec 14;342(6251):819–821. [PubMed]
  • Liao XC, Tang J, Rosbash M. An enhancer screen identifies a gene that encodes the yeast U1 snRNP A protein: implications for snRNP protein function in pre-mRNA splicing. Genes Dev. 1993 Mar;7(3):419–428. [PubMed]
  • Smith V, Barrell BG. Cloning of a yeast U1 snRNP 70K protein homologue: functional conservation of an RNA-binding domain between humans and yeast. EMBO J. 1991 Sep;10(9):2627–2634. [PMC free article] [PubMed]
  • Kao HY, Siliciano PG. The yeast homolog of the U1 snRNP protein 70K is encoded by the SNP1 gene. Nucleic Acids Res. 1992 Aug 11;20(15):4009–4013. [PMC free article] [PubMed]
  • Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988 Mar;4(1):11–17. [PubMed]
  • Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. [PubMed]
  • Mattaj IW. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell. 1986 Sep 12;46(6):905–911. [PubMed]
  • Jarmolowski A, Mattaj IW. The determinants for Sm protein binding to Xenopus U1 and U5 snRNAs are complex and non-identical. EMBO J. 1993 Jan;12(1):223–232. [PMC free article] [PubMed]
  • Tazi J, Alibert C, Temsamani J, Reveillaud I, Cathala G, Brunel C, Jeanteur P. A protein that specifically recognizes the 3' splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoprotein. Cell. 1986 Dec 5;47(5):755–766. [PubMed]
  • Gerke V, Steitz JA. A protein associated with small nuclear ribonucleoprotein particles recognizes the 3' splice site of premessenger RNA. Cell. 1986 Dec 26;47(6):973–984. [PubMed]
  • Mattox W, Ryner L, Baker BS. Autoregulation and multifunctionality among trans-acting factors that regulate alternative pre-mRNA processing. J Biol Chem. 1992 Sep 25;267(27):19023–19026. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...