• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Nov 25, 1991; 19(22): 6241–6247.
PMCID: PMC329134

Theoretical analysis of library screening using a N-dimensional pooling strategy.

Abstract

A solution to the problem of library screening is analysed. We examine how to retrieve those clones that are positive for a single copy landmark from a whole library while performing only a minimum number of laboratory tests: the clones are arranged on a matrix (i.e in 2 dimensions) and pooled according to the rows and columns. A fingerprint is determined for each pool and an analysis allows selection of a list containing all the positive clones, plus a few false positives. These false positives are eliminated by using another (or several other) matrix which has to be reconfigured in a way as different as possible from the previous one. We examine the use of cubes (3 dimensions) or hypercubes of any dimension instead of matrices and analyse how to reconfigure them in order to eliminate the false positives as efficiently as possible. The advantage of the method proposed is the low number of tests required and the low number of pools that require to be prepared [only 258 pools and 282 tests (258 + 24 verifications) are needed to screen the 72,000 clones of the CEPH YAC library (1) with a sequence-tagged site]. Furthermore, this method allows easy and systematic screenings and can be applied to a large physical mapping project, which will lead to an interesting map with a low, precisely known, rate of error: when fingerprinting a 150 Mb chromosome with the CEPH YAC library and 1750 sequence-tagged sites, 903,000 tests would be necessary to obtain about 20 contigs of an average length of 6.7 Mb, while only about one false positive would be expected in the resultant map. Finally, STSs can be ordered by dividing a clone library into sublibraries (corresponding to groups of microplates for example) and testing each STS on pooled clones from each sublibrary. This allows to dedicate to each STSs a fingerprint that consists in the list of the positive pools. In many cases these fingerprints will be enough to order the STSs. Indeed if large YACs (greater than 1 Mb) can be obtained, the combined screening of DNA families and YAC DNA pools would allow an integrated construction of both genetic and physical maps of the human genome, that will also reduce the optimal number of meioses needed for a 1 centimorgan linkage map.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Albertsen HM, Abderrahim H, Cann HM, Dausset J, Le Paslier D, Cohen D. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4256–4260. [PMC free article] [PubMed]
  • Green ED, Olson MV. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. [PMC free article] [PubMed]
  • Kwiatkowski TJ, Jr, Zoghbi HY, Ledbetter SA, Ellison KA, Chinault AC. Rapid identification of yeast artificial chromosome clones by matrix pooling and crude lysate PCR. Nucleic Acids Res. 1990 Dec 11;18(23):7191–7192. [PMC free article] [PubMed]
  • Evans GA, Lewis KA. Physical mapping of complex genomes by cosmid multiplex analysis. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5030–5034. [PMC free article] [PubMed]
  • Barillot E, Dausset J, Cohen D. Theoretical analysis of a physical mapping strategy using random single-copy landmarks. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3917–3921. [PMC free article] [PubMed]
  • Torney DC. Mapping using unique sequences. J Mol Biol. 1991 Jan 20;217(2):259–264. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...