• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Jun 25, 1981; 9(12): 2643–2658.
PMCID: PMC326882

Sequence specific cleavage of DNA by micrococcal nuclease.


Micrococcal nuclease is shown to cleave DNA under conditions of partial digestion in a specific manner. Sequences of the type 5'CATA and 5'CTA are attacked preferentially, followed by exonucleolytic degradation at the newly generated DNA termini. GC-rich flanking sequences further increase the probability of initial attack. Unexpectedly, long stretches containing only A and T are spared by the nuclease. These results, which were obtained with spared by the nuclease. These results, which were obtained with mouse satellite DNA and two fragments from the plasmid pBR22, do not support the previous contention that it is the regions of high At-content which are initially cleaved by micrococcal nuclease. This specificity of micrococcal nuclease complicates its use in experiments intended to monitor the nucleoprotein structure of a DNA sequence in chromatin.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Wingert L, Von Hippel PH. The conformation dependent hydrolysis of DNA by micrococcal nuclease. Biochim Biophys Acta. 1968 Mar 18;157(1):114–126. [PubMed]
  • Kornberg RD. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. [PubMed]
  • Mathis D, Oudet P, Chambon P. Structure of transcribing chromatin. Prog Nucleic Acid Res Mol Biol. 1980;24:1–55. [PubMed]
  • McGhee JD, Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. [PubMed]
  • Hörz W, Altenburger W. Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res. 1981 Feb 11;9(3):683–696. [PMC free article] [PubMed]
  • Hörz W, Zachau HG. Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur J Biochem. 1977 Mar 1;73(2):383–392. [PubMed]
  • Greene PJ, Heyneker HL, Bolivar F, Rodriguez RL, Betlach MC, Covarrubias AA, Backman K, Russel DJ, Tait R, Boyer HW. A general method for the purification of restriction enzymes. Nucleic Acids Res. 1978 Jul;5(7):2373–2380. [PMC free article] [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • Hörz W, Zachau HG. Deoxyribonuclease II as a probe for chromatin structure. I. Location of cleavage sites. J Mol Biol. 1980 Dec 15;144(3):305–327. [PubMed]
  • Hewish DR, Burgoyne LA. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. [PubMed]
  • Kacian DL, Spiegelman S. Use of micrococcal nuclease to monitor hybridization reactions with DNA. Anal Biochem. 1974 Apr;58(2):534–540. [PubMed]
  • Sutcliffe JG. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. [PubMed]
  • Gray CP, Sommer R, Polke C, Beck E, Schaller H. Structure of the orgin of DNA replication of bacteriophage fd. Proc Natl Acad Sci U S A. 1978 Jan;75(1):50–53. [PMC free article] [PubMed]
  • Rosenberg H, Singer M, Rosenberg M. Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. Science. 1978 Apr 28;200(4340):394–402. [PubMed]
  • Fittler F, Zachau HG. Subunit structure of alpha-satellite DNA containing chromatin from African green monkey cells. Nucleic Acids Res. 1979 Sep 11;7(1):1–13. [PMC free article] [PubMed]
  • Hattman S. Partial purification of the Escherichia coli K-12 mec+ deoxyribonucleic acid-cytosine methylase: in vitro methylation completely protects bacteriophage lambda deoxyribonucleic acid against cleavage by R-EcoRII. J Bacteriol. 1977 Mar;129(3):1330–1334. [PMC free article] [PubMed]
  • Noll M, Kornberg RD. Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol. 1977 Jan 25;109(3):393–404. [PubMed]
  • Nedospasov SA, Georgiev GP. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem Biophys Res Commun. 1980 Jan 29;92(2):532–539. [PubMed]
  • Wu C. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980 Aug 28;286(5776):854–860. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...