• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Mar 1986; 83(5): 1174–1178.
PMCID: PMC323037

Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.

Abstract

Each photoexcited rhodopsin (R*) molecule catalyzes binding of GTP to many copies of the guanine nucleotide-binding protein transducin, which, in its GTP-binding form, then activates cGMP phosphodiesterase (PDEase). Subsequent deactivation of this light-activated enzyme cascade involves hydrolysis of the GTP bound to transducin, as well as decay of the activating capacity of R*. We report here that deactivation of PDEase in rod outer segment suspensions is highly enhanced by addition of ATP and purified 48-kDa protein, which is an intrinsic rod outer segment protein that is soluble in the dark but binds to photolyzed rhodopsin that has been phosphorylated by rhodopsin kinase and ATP [Kühn, H., Hall, S.W. & Wilden, U. (1984) FEBS Lett. 176, 473-478]. To analyze the mechanism by which ATP and 48-kDa protein deactivate PDEase, we used an ATP-free system consisting of thoroughly washed disk membranes, whose rhodopsin had been previously phosphorylated and chromophore-regenerated, and to which purified PDEase and transducin were reassociated. Such phosphorylated membranes exhibited a significantly lower (by a factor less than or equal to 5) light-induced PDEase-activating capacity than unphosphorylated controls. Addition of purified 48-kDa protein to phosphorylated membranes further suppressed their PDEase-activating capacity; suppression could be as high as 98% (as compared to unphosphorylated membranes), depending on the amount of 48-kDa protein and the flash intensity. Addition of ATP had little further effect. In contrast, PDEase activation or deactivation with unphosphorylated control membranes was not influenced by 48-kDa protein, even in the presence of ATP, provided rhodopsin kinase was absent. Our data suggest that 48-kDa protein binds to phosphorylated R* and thereby quenches its capacity to activate transducin and PDEase.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Wheeler GL, Bitensky MW. A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4238–4242. [PMC free article] [PubMed]
  • Kwok-Keung Fung B, Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci U S A. 1980 May;77(5):2500–2504. [PMC free article] [PubMed]
  • Kühn H. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature. 1980 Feb 7;283(5747):587–589. [PubMed]
  • Fung BK, Hurley JB, Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. [PMC free article] [PubMed]
  • Yee R, Liebman PA. Light-activated phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation. J Biol Chem. 1978 Dec 25;253(24):8902–8909. [PubMed]
  • Liebman PA, Pugh EN., Jr The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms and significance for vision. Vision Res. 1979;19(4):375–380. [PubMed]
  • Kühn H. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry. 1978 Oct 17;17(21):4389–4395. [PubMed]
  • Wilden U, Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry. 1982 Jun 8;21(12):3014–3022. [PubMed]
  • Kühn H, Hall SW, Wilden U. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. 1984 Oct 29;176(2):473–478. [PubMed]
  • Kühn H, Cook JH, Dreyer WJ. Phosphorylation of rhodopsin in bovine photoreceptor membranes. A dark reaction after illumination. Biochemistry. 1973 Jun 19;12(13):2495–2502. [PubMed]
  • Liebman PA, Pugh EN., Jr ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature. 1980 Oct 23;287(5784):734–736. [PubMed]
  • Emeis D, Kühn H, Reichert J, Hofmann KP. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 1982 Jun 21;143(1):29–34. [PubMed]
  • Bennett N, Michel-Villaz M, Kühn H. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Eur J Biochem. 1982 Sep;127(1):97–103. [PubMed]
  • Miller JL, Dratz EA. Phosphorylation at sites near rhodopsin's carboxyl-terminus regulates light initiated cGMP hydrolysis. Vision Res. 1984;24(11):1509–1521. [PubMed]
  • Hermolin J, Karell MA, Hamm HE, Bownds MD. Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes. J Gen Physiol. 1982 Apr;79(4):633–655. [PMC free article] [PubMed]
  • Pfister C, Chabre M, Plouet J, Tuyen VV, De Kozak Y, Faure JP, Kühn H. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science. 1985 May 17;228(4701):891–893. [PubMed]
  • Dorey C, Cozette J, Faure JP. A simple and rapid method for isolation of retinal S antigen. Ophthalmic Res. 1982;14(4):249–255. [PubMed]
  • Zigler JS, Jr, Mochizuki M, Kuwabara T, Gery I. Purification of retinal S-antigen to homogeneity by the criterion of gel electrophoresis silver staining. Invest Ophthalmol Vis Sci. 1984 Aug;25(8):977–980. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Baehr W, Devlin MJ, Applebury ML. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979 Nov 25;254(22):11669–11677. [PubMed]
  • Sitaramayya A, Liebman PA. Mechanism of ATP quench of phosphodiesterase activation in rod disc membranes. J Biol Chem. 1983 Jan 25;258(2):1205–1209. [PubMed]
  • Hurwitz RL, Bunt-Milam AH, Chang ML, Beavo JA. cGMP phosphodiesterase in rod and cone outer segments of the retina. J Biol Chem. 1985 Jan 10;260(1):568–573. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...