Logo of nanoreslettspringer open web sitethis articlemanuscript submissionregistrationjournal front pagespringer open web site
Nanoscale Res Lett. 2011; 6(1): 292.
Published online 2011 Apr 5. doi:  10.1186/1556-276X-6-292
PMCID: PMC3211358

Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries


We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoOx). The copper nanofibers (CuNFs) were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoOxthin-film (CoOxTF) electrodes, the CuNFs@CoOxelectrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoOxcomposite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.


Cobalt oxide (CoOx) is a high-capacity electrode material for Li-ion batteries with a theoretical capacity of at least two times greater than that of graphite (ca. 370 mAh g-1) [1]. However, the cobalt oxides show large irreversible capacity and poor cycling performance caused by Li-alloying, agglomeration or growth of passivation layers [1]. In addition, severe volume expansion during discharge/charge process accelerates fading of the capacity, and electrical contact between the electrode material and current collector eventually fails. To overcome these problems, several strategies that employ a secondary material [2], a chemically or physically prepared surface coating [3], size optimization [4,5], and fabrication of a nanostructure [6] have been reported. These approaches generally provide a facile electrochemical reaction route, high conductivity, and structural stability. In particular, nanostuctured electrode materials are expected to be well-suited for next-generation Li-ion batteries due to their substantially increased reaction area and facilitated charge carrier transport through shortened Li-ion diffusion paths [7]. For example, Kim et al. [8] proposed a core-shell nanorod array electrode, which consists of a metallic conducting core with a vanadium oxide (VOx) shell layer. Such highly conducting core-embedded nanostructure was capable of enhancing the electrochemical properties of the VOxelectrodes even though the electroactive materials have high electrical resistance. In addition, incorporation of metal into active material was found to increase the charge transfer in electrode materials along with facilitated Li-ion diffusion [9]. Therefore, it is expected that the incorporation of highly conducting metal nanowires into cobalt oxide materials would be a promising way to increase electrical conductivity and mitigate the particle agglomeration of the cobalt oxide during Li-ion insertion/extraction.

In this report, we prepared cobalt oxide electrode that is composited with copper nanofiber network, and demonstrated that such embedded nanostructure is able to enhance electrical conductivity and mechanical stability for the CoOxelectrode during repeated cyclings.


Fabrication of Cu nanofiber-embedded cobalt oxide composites

The composite nanostructure of copper nanofiber-networked cobalt oxide (CuNFs@CoOx) was prepared by using an electrospinning process to produce the copper nanofibers and followed by a radio frequency magnetron sputtering (RF sputtering) to deposit the CoOxmaterials. The electrospinning solution was prepared by mixing copper(II) chloride dihydrate (CuCl2 2H2O, Sigma-Aldrich, Saint Louis, USA), methanol, and polyvinylpyrrolidone (PVP; Mw = 1,300,000 g mol-1, Sigma-Aldrich, Saint Louis, USA). The solution was then immediately loaded into a syringe, which was attached to a 23-gauge stainless steel needle. A 10-kV electric field was applied between the needle tip and a grounded stainless steel disc at a distance of 10 cm. The stainless steel substrate was mechanically polished before use with a sandpaper and diamond paste (ca. 0.3 μm) until a mirror-like surface was obtained. Subsequently, the collected CuCl2/PVP composite on the substrate was heated at 300°C for 3 h in air. To obtain the metallic CuNFs, a reduction treatment was performed at 200°C in H2 atmosphere at a flow rate of 60 sccm. Next, CoOxwas deposited onto the Cu nanofibers-formed substrate via RF sputtering with an cobalt oxide target under an inert Ar gas atmosphere at a working pressure of 1 × 10-3 Torr. The deposition thickness of the CoOxwas controlled to ca. 100 nm. The mass ratio of the deposited CuNFs and CoOxwas measured to be 2:3 using a micro-balance (Sartorius, M3P). The mass of the electrodes was controlled to have the similar quantity (ca. 0.125 mg) of CoOxas the active material.


The microstructures were characterized by field emission scanning electron microscopy (FESEM, Hitachi S-4700) and x-ray diffraction (XRD, Rigaku Ru-200B). To measure the thickness and investigate the cross section, the electrodes were deposited onto Si substrates instead of stainless steel substrates. The composition of the deposited CoOxwas characterized by x-ray photoelectron spectroscopy (XPS, VG Multilab 2000) with a monochromic Al Kα x-ray source (E = 1486.6 eV). Data processing was performed using the Avantage 4.54 software program. The background was corrected using the Shirley method, and the binding energy of the C 1s peak from the support at 284.5 eV was taken as an internal standard.

Electrochemical measurements

The electrochemical tests were performed using a two-electrode system fabricated with the prepared materials for the working electrode and metallic Li for the counter electrode in an Ar-circulating glove box. A 1-M LiPF6 solution in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate was used as the electrolyte. The galvanostatic discharge/charge mode at various C-rates from 0.15 to 3C was conducted with a potential window of 2.5 to 0.01 V (vs. Li/Li+) using a battery cycler (WonA tech, WBCS3000). 0.15C rate corresponds to a current rate of 0.135 A g-1 of Co3O4, in which the theoretically complete discharge could be achieved in 6.7 h, and 3C rate corresponds to 2.7 A g-1. The AC impedance measurement was performed using a Solartron 1260 frequency response analyzer. An amplitude voltage of 5 mV was applied over the frequency range from 100 kHz to 10 mHz.

Results and discussion

Morphology and microstructure

Figure Figure1a1a shows that the prepared CuNFs were deposited on the Si substrate and they have an average diameter of ca. 50 ± 20 nm. The surface morphology of the individual CuNF can be observed in the inset figure of Figure Figure1a.1a. Figure Figure1b1b shows the bare CoOxfilm structure. On the other hand, Figure Figure1c1c represents a combined morphology of both nanostructures of the one-dimensional CuNFs and the CoOx. The CuNFs@CoOxhas a rough surface compared to the bare CoOxTF, which may be ascribed to the presence of the CuNF network on the substrate. The sputtered CoOxwas deposited not only on the substrate but also on the surface of CuNFs. After CoOxdeposition, all the CuNFs seem to be covered by the CoOxlayer.

Figure 1
FESEM images. (a) Horizontally layered CuNFs (the inset shows a highly magnified image of the prepared nanofiber); (b) CoOxTF prepared by RF-sputtering (the inset shows the deposited thin-film thickness); (c) the composite structure of CuNFs@CoOx(the ...

The crystalline information and chemical composition of deposited electrode materials have been elucidated by XRD and XPS. Figure Figure2a2a compares the XRD patterns of CuNFs, CoOxTF, and CuNFs@CoOx, respectively. The sputtered CoOxon the stainless steel substrate indicated an amorphous nature because the diffraction pattern did not show any crystalline peaks from cobalt oxides, except the well-defined peaks from the stainless steel disc. The amorphous phase typically exhibits a high capacity and good cycling performance due to the internal stress relaxation generated by discharge/charge process [10]. The characteristic peaks of the CuNFs were observed at the expected diffraction angles from the Cu(111) and Cu(200) planes [JCPDS 04-0836]. In order to confirm the chemical state of deposited CoOx, XPS analysis was employed. In Figure Figure2b,2b, the deposited CoOxgives two main peaks at 779.8 and 795.1 eV due to the Co 2p3/2 and Co 2p1/2, respectively, together with two satellite peaks at 788.6 and 803.7 eV. The peak splitting between Co 2p3/2 and Co 2p1/2, corresponding to the spin-orbit doublet of the Co 2p, is ca. 15.3 eV, and the weak and broad satellite peak of the Co 2p3/2 appears at ca. 9 eV higher than the main peak. Such a low-intense satellite can be considered as an indication of the Co3O4 phase [11,12], while the satellite peak of the CoO phase is relatively more intense (ca. 30% of the total Co 2p3/2 signal) [13]. These results indicate that the sputtered CoOxis dominantly of Co3O4 phase, which is consistent with its electrochemical properties, as will be discussed later.

Figure 2
Microstructural properties. (a) x-ray diffraction patterns of the CuNFs, CoOxTF, and CuNFs@CoOxon a stainless steel disc. For the case of CuNFs, we loaded a large amount of CuNFs to acquire a significant signal. The asterisk mark can be indexed to the ...

Electrochemical properties

To investigate the influence of CuNFs on the Li ions storage performance of the CoOx, we conducted galvanostatic discharge/charge processes. Figure Figure3a3a shows the first and second discharge/charge voltage profiles at a constant 0.15C between the voltages of 2.5 and 0.01 V (vs. Li+/Li). Both CoOxTF and CuNFs@CoOxexhibit the plateau around 1.0 V in the first discharge curve. This is associated with the following electrochemical reaction [14] of Co3O4 + 8Li+ + 8e- → 4Li2O + 3Co. The CuNFs@CoOx seems to have a little bit larger irreversible capacity of ca. 240 mAh g-1 compared to the bare CoOxTF, which could be caused by the enlarged contact area between the electrolyte and electrode material [7]. Although the CuNFs@CoOxelectrode indicated a conversion profile similar to that of the CoOxTF, the capacity was ca. 30% higher than that of the bare CoOxTF, as shown in Figure Figure3b.3b. The highly rugged microstructure of CuNFs@CoOxmight be responsible for the increased reaction sites along the CuNF network, making the electrochemical reaction more efficient with Li ions, because the electrochemical performance can be dependent on the textual characteristics of the electrodes [15]. In addition, it was also reported that the incorporation of nanostructure into a Li host matrix exhibited an enhanced reversible capacity [8,16]. The coulombic efficiency (the ratio of the number of charges that enter the electrode to the number that can be extracted from the electrode) was more than 90% except for the initial few cycles, which suggests that the inserted Li ions were reversibly extracted. Figure Figure3c3c shows the current density dependence on the discharge capacities of the CoOxTF and CuNFs@CoOxat 0.15, 0.3, 0.6, 1.2, 2.5, and 3C-rates. The capacity of the CoOxTF decreased rapidly with increasing current density, which is consistent with previously reported results [15,17], whereas the CuNFs@CoOxwas able to maintain 50% of its initial capacity even at 3C-rate. Such enhanced performance of the CuNFs@CoOxcan be attributed to the improvement of the electrical conductivity of the CoOxby the embedded CuNF network, which creates an efficient electron percolation path between the current collector and the active material [8].

Figure 3
Galvanostatic mode at 0.15C. The potential curves of (a) the initial cycling profiles; (b) the specific capacity with cycling number; (c) the rate performance test for various C-rates of 0.15 to 3C.

To elucidate reason of the enhanced performance, the differential capacity was examined. Figure 4a, b was obtained from the first and tenth cycles, respectively. At the first cycle (Figure (Figure4a),4a), the intensity of the CuNFs@CoOxwas larger than that of the CoOxTF, showing higher capacity and faster kinetics of the phase transformation. In Figure Figure4b,4b, the decreased peak intensity and integral areas could be caused from the irreversible capacity due to the incomplete electrochemical reaction. Herein, it is interesting to find that some amount of previously formed Li2O phase would contribute to the capacity at tenth cycle. The formed Li2O has been generally reported to be electrochemically inactive. However, it was also reported that Li2O below 10 nm could be activated [1]. The activated Li2O can take place in the cyclic voltammetry results [18-20]. Two cathodic peaks at 0.82 and 1.15 V were observed in the first cycle in Figure Figure4a,4a, but they were shifted to 0.95 and 1.18 V, respectively, in the subsequent cycles as shown in Figure Figure4b,4b, indicating that the electrochemical reactions might be different from the first cycle. Thus, the electrochemical reactions in the CuNFs@CoOxcomposite with Li ions can involve the following steps [21-23]:

equation image
equation image
Figure 4
Calculated differential capacity plots. (a) the first cycle; (b) the tenth cycle of the CoOxTF and CuNFs@CoOx. The discharge process represents oxidation, while the charge process represents reduction processes.

The first discharge process is an irreversible reaction of Co3O4 and Li, which forms metallic Co and Li2O phase. During the first charge process, the Co and Li2O forms CoO instead of Co3O4 owing to the similarity of oxygen lattice in the Li2O and CoO [24]. In the subsequent discharge/charge processes, the modified oxygen lattice is continuously preserved, indicating that the reaction of CoO with Li develops into reversible cycles.

In Figure Figure5,5, AC impedance measurements were performed to probe the kinetic factors contributing to the capacity and rate performance. The equivalent circuit analysis is based on a Randles equivalent circuit for an electrochemical system, in which Rb is the bulk resistance, corresponding to the resistance value at the high-frequency intercept of the semicircle with the real axis [9,25]. Rct and Cct are the resistance of the charge-transfer and double-layer capacitance, respectively. The Rb value of the CuNFs@CoOxwas similar to that of the bare CoOxTF electrodes, whereas the Rct and Cct values for the CuNFs@CoOxwere much smaller than those for CoOxTF. A considerable change in the sum of RSEI and Rct from 344 Ω was observed for CoOxTF to 96 Ω for CuNFs@CoOx, indicating an enhanced electrical conductivity arising from the composite, which implies that the charge transfer was significantly improved by the embedded CuNF network structure within the CoOxTF. This result confirmed that the embedded CuNF network could not only contribute to the high conductivity of the overall electrode, but also largely improve the electrochemical properties of CoOxduring the cyclings.

Figure 5
AC impedance spectra for both samples. The experimental results are presented as Nyquist plots by applying a sine wave with amplitude of 5 mV over the frequency range 100 kHz to 10 mHz, which were measured at E = 1.6 V (vs. Li+/Li) after the cycles.

Mechanical stability

Figure Figure66 shows the FESEM images of the CoOxTF and CuNFs@CoOxafter the 30th cycle. Two samples were disassembled after the electrochemical cycles in order to characterize the changes in the morphology. The CoOxTF appeared to experience serious cracking and crumbling, as shown in Figure Figure6a,6a, while the CuNFs@CoOxseemed to remain fairly stable, as shown in Figure Figure6b.6b. The CuNFs@CoOxmaintained the integrity of the electrode with the current collector, suggesting the composite has the greater stress relaxation than the bare CoOxTF despite its higher capacity. This result implies that the embedded CuNF network significantly compensates the generated stress compared with the CoOxTF without the nanostructure. Thus, our results support the conclusion that embedded CuNF network nanostructures can significantly improve the capacity, rate performance, and mechanical stability of the CoOxelectrode materials.

Figure 6
FESEM images of the cycled CoOxelectrodes. (a) without and (b) with the Cu NFs after 30th cycle. The tested electrodes were disassembled and extracted from the Li-ion cell.


A CuNFs@CoOxcomposite electrode was fabricated to serve as an anode for rechargeable Li-ion batteries. As an efficient Li-ion battery anode material, CuNFs@CoOxexhibited a higher capacity and rate performance than bare CoOxTF without CuNFs; the capacity at 0.15C was increased by ca. 30%, and the capacity was maintained above 50% even at 3C. These enhancements could be attributed to an increased number of reaction sites, facilitated charge transport, a decreased electrochemical double-layer capacitance, and facile stress relaxation by embedded CuNF network within the CoOx. Consequently, this CuNFs@CoOxcomposite structure can be a promising candidate for use in the electrodes of high-performance Li-ion batteries.


CuNFs@CoOx: copper nanofiber-networked cobalt oxide; CuNFs: copper nanofibers; CoOxTF: cobalt oxide thin-film; CoOx: cobalt oxide; FESEM: field emission scanning electron microscopy; PVP: polyvinylpyrrolidone; VOx: vanadium oxide; XPS: x-ray photoelectron spectroscopy; XRD: x-ray diffraction.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

SHN and WBK designed and drafted the study. SHN and YSK fabricated the electrode using the electrospinning and sputtering. HSS and JGK participated in the characterization. All authors read and approved the final manuscript.


This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (R15-2008-006-03002-0) and by the Korean government (MEST) (no. 2010000018) and by the Core Technology Development Program for Next-generation Solar Cells of Research Institute of Solar and Sustainable Energies (RISE), GIST.


  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496. doi: 10.1038/35035045. [PubMed] [Cross Ref]
  • Kim D-W, Ko Y-D, Park J-G, Kim B-K. Formation of lithium-driven active/inactive nanocomposite electrode based on Ca3Co4O9 nanoplates. Angew Chem Int Ed. 2007;46:6654. doi: 10.1002/anie.200701628. [PubMed] [Cross Ref]
  • Liu H, Bo S, Cui W, Li F, Wang C, Xia Y. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries. Electrochim Acta. 2008;53:6497. doi: 10.1016/j.electacta.2008.04.030. [Cross Ref]
  • Ahn H-J, Choi H-C, Park K-W, Kim S-B, Sung Y-E. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J Phys Chem B. 2004;108:9815. doi: 10.1021/jp035769n. [Cross Ref]
  • Kang J-G, Ko Y-D, Park J-G, Kim D-W. Origin of capacity fading in nano-sized Co3O4 electrode: Electrochemical impedance spectroscopy study. Nanoscale Res Lett. 2008;3:390. doi: 10.1007/s11671-008-9176-7. [Cross Ref]
  • Lou XW, Deng D, Lee JY, Feng J, Archer LA. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater. 2008;20:258. doi: 10.1002/adma.200702412. [Cross Ref]
  • Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008;20:2878. doi: 10.1002/adma.200800627. [Cross Ref]
  • Kim Y-S, Ahn H-J, Nam SH, Lee SH, Shim H-S, Kim WB. Honeycomb pattern array of vertically standing core-shell nanorods: Its application to Li energy electrodes. Appl Phys Lett. 2008;93:103104. doi: 10.1063/1.2977862. [Cross Ref]
  • Nam SH, Shim H-S, Kim Y-S, Dar MA, Kim JG, Kim WB. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl Mater Interfaces. 2010;2:2046. doi: 10.1021/am100319u. [Cross Ref]
  • Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science. 1997;276:1395. doi: 10.1126/science.276.5317.1395. [Cross Ref]
  • Castner DG, Watso PR, Chan IY. X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. 1. Characterization of calcined catalysts. J Phys Chem. 1989;93:3188. doi: 10.1021/j100345a061. [Cross Ref]
  • Emst B, Libs S, Chaumette P, Alain K. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Appl Catal A. 1999;186:145. doi: 10.1016/S0926-860X(99)00170-2. [Cross Ref]
  • Dedryvère R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon J-M. Contribution of x-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater. 2004;16:1056.
  • Larcher D, Sudant G, Leriche J-B, Chabre Y, Tarascon J-M. The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc. 2002;149:A234. doi: 10.1149/1.1435358. [Cross Ref]
  • Barreca D, Cruz-Yusta M, Gasparotto A, Maccato C, Morales J, Pozza A, Sada C, Sánchez L, Tondello E. Cobalt oxide nanomaterials by vapor-phase synthesis for fast and reversible lithium storage. J Phys Chem C. 2010;114:10054. doi: 10.1021/jp102380e. [Cross Ref]
  • Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater. 2006;5:567. doi: 10.1038/nmat1672. [PubMed] [Cross Ref]
  • Yu Y, Chen C-H, Shui J-L, Xie S. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew Chem Int Ed. 2005;44:7085. doi: 10.1002/anie.200501905. [PubMed] [Cross Ref]
  • Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX. Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources. 2002;109:142. doi: 10.1016/S0378-7753(02)00052-6. [Cross Ref]
  • Do J-S, Weng C-H. Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries. J Power Sources. 2006;159:323. doi: 10.1016/j.jpowsour.2006.04.054. [Cross Ref]
  • Li W-Y, Xu L-N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater. 2005;15:851. doi: 10.1002/adfm.200400429. [Cross Ref]
  • Chou S-L, Wang J-Z, Liu H-K, Dou S-X. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J Power Sources. 2008;182:359. doi: 10.1016/j.jpowsour.2008.03.083. [Cross Ref]
  • Fu Z-W, Wang Y, Zhang Y, Qin Q-Z. Electrochemical reaction of nanocrystalline Co3O4 thin film with lithium. Solid State Ion. 2004;170:105. doi: 10.1016/j.ssi.2004.02.020. [Cross Ref]
  • Li C, Yin X, Chen L, Li Q, Wang T. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem Eur J. 2010;16:5215. doi: 10.1002/chem.200901632. [PubMed] [Cross Ref]
  • Obrovac MN, Dunlap RA, Sanderson RJ, Dahn JR. The electrochemical displacement reaction of lithium with metal oxides. J Electrochem Soc. 2001;148:A576. doi: 10.1149/1.1370962. [Cross Ref]
  • Yang SB, Song HH, Chen XH. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem Commun. 2006;8:137. doi: 10.1016/j.elecom.2005.10.035. [Cross Ref]

Articles from Nanoscale Research Letters are provided here courtesy of Springer
PubReader format: click here to try


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...