• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jarospringer.comThis journalToc AlertsSubmit OnlineOpen Choice
J Assoc Res Otolaryngol. Jun 2003; 4(2): 219–234.
Published online May 6, 2003. doi:  10.1007/s10162-002-3022-x
PMCID: PMC3202713

Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio)

Abstract

Mechanoreceptive hair cells are extremely sensitive to aminoglycoside antibiotics, including neomycin. Hair cell survival was assessed in larval wild-type zebrafish lateral line neuromasts 4 h after initial exposure to a range of neomycin concentrations for 1 h. Each of the lateral line neuromasts was scored in live fish for the presence or absence of hair cells using the fluorescent vital dye DASPEI to selectively label hair cells. All neuromasts were devoid of DASPEI-labeled hair cells 4 h after 500 µM neomycin exposure. Vital DASPEI staining was proportional to the number of hair cells per neuromast identified in fixed larvae using immunocytochemistry for acetylated tubulin and phalloidin labeling. The time course of hair cell regeneration in the lateral line neuromasts was also analyzed following neomycin-induced damage. Regenerated hair cells were first observed using live DASPEI staining 12 and 24 h following neomycin treatment. The potential role of proliferation in regenerating hair cells was analyzed. A 1 h pulse-fix protocol using bromodeoxyuridine (BrdU) incorporation was used to identify S-phase cells in neuromasts. BrdU incorporation in neomycin-damaged neuromasts did not differ from control neuromasts 4 h after drug exposure but was dramatically upregulated after 12 h. The proliferative cells identified during a 1 h period at 12 h after neomycin treatment were able to give rise to new hair cells by 24–48 h after drug treatment. The results presented here provide a standardized preparation for studying and identifying genes that influence vertebrate hair cell death, survival, and regeneration following ototoxic insults.

Keywords: hair cell death, lateral line, aminoglycosides, hair cell regeneration, zebrafish, genetic screening

Full Text

The Full Text of this article is available as a PDF (528K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci. Lett. 1996;205:17–20. doi: 10.1016/0304-3940(96)12367-3. [PubMed] [Cross Ref]
2. Alexandre D, Ghysen A. Somatotopy of the lateral line projection in larval zebrafish. Proc. Natl. Acad. Sci. U.S.A. 1999;96:7558–7562. doi: 10.1073/pnas.96.13.7558. [PMC free article] [PubMed] [Cross Ref]
3. Baird RA, Steyger PS, Schuff NR. Mitotic and nonmitotic hair cell regeneration in the bullfrog vestibular otolith organs. Ann. N.Y. Acad. Sci. 1996;781:59–70. [PubMed]
4. Bang PI, Sewell WF, Malicki JJ. Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). J. Comp. Neurol. 2001;438:173–190. doi: 10.1002/cne.1308. [PubMed] [Cross Ref]
5. Carey JP, Fuchs AF, Rubel EW. Hair cell regeneration and recovery of the vestibuloocular reflex in the avian vestibular system. J. Neurophysiol. 1996;76:3301–3312. [PubMed]
6. Chardin S, Romand R. Regeneration and mammalian auditory hair cells. Science. 1995;267:707–711. [PubMed]
7. Cheng AG-L, Shang J, Rubel EW. Hair cell death in vitro in the avian BP: characterization of the model and caspase inhibition. Assoc. Res. Otolaryngol. 2001;24:Abstr. 466.
8. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science. 1988;240:1772–1774. [PubMed]
9. Cotanche DA. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear. Res. 1987;30:181–195. doi: 10.1016/0378-5955(87)90135-3. [PubMed] [Cross Ref]
10. Cotanche DA, Lee KH, Stone JS, Picard DA. Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anal. Embryol. (Berl.) 1994;189:1–18. [PubMed]
11. Cruz RM, Lambert PR, Rubel EW. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch. Otolaryngol. Head Neck Surg. 1987;113:1058–1062. [PubMed]
12. Cunningham L, Cheng AG, Rubel EW. Caspase activation in hair cells of the mouse utricle exposed to neomycin. J. Neurosci. 2002;22:8532–8540. [PubMed]
13. Duckert LG, Rubel EW. Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hear. Res. 1990;48:161–182. doi: 10.1016/0378-5955(90)90206-5. [PubMed] [Cross Ref]
14. Ernest S, Rauch GJ, Haffter P, Geisler R, Petit C, Nicolson T. Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol. Genet. 2000;9:2189–2196. doi: 10.1093/hmg/9.14.2189. [PubMed] [Cross Ref]
15. Fischel–Ghodsian N. Genetic factors in aminoglycoside toxicity. Ann. N.Y. Acad. Sci. 1999;884:99–109. [PubMed]
16. Forge A, Li L. Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear. Res. 2000;139:97–115. doi: 10.1016/S0378-5955(99)00177-X. [PubMed] [Cross Ref]
17. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol. Neurootol. 2000;5:3–22. doi: 10.1159/000013861. [PubMed] [Cross Ref]
18. Girod DA, Duckert LG, Rubel EW. Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hear. Res. 1989;42:175–194. doi: 10.1016/0378-5955(89)90143-3. [PubMed] [Cross Ref]
19. Haddon C, Mowbray C, Whitfield T, Jones D, Gschmeissner S, Lewis J. Hair cells without supporting cells: further studies in the ear of the zebrafish mind bomb mutant. J. Neurocytol. 1999;28:837–850. doi: 10.1023/A:1007013904913. [PubMed] [Cross Ref]
20. Hashino E, Salvi RJ. Regenerated hair cells exhibit a transient resistance to aminoglycoside toxicity. Brain Res. 1996;720:172–182. doi: 10.1016/0006-8993(95)01467-5. [PubMed] [Cross Ref]
21. Husmann KR, Morgan AS, Girod DA, Durham D. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells. Hear. Res. 1998;125:109–119. doi: 10.1016/S0378-5955(98)00137-3. [PubMed] [Cross Ref]
22. Jones JE, Corwin JT. Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J. Neurosci. 1996;16:649–662. [PubMed]
23. Jorgensen JM. Regeneration of lateral line and inner ear vestibular cells. Ciba Found. Symp. 1991;160:151–163. [PubMed]
24. Kalmijn AD. Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Gorner P, Munz H, editors. The mechanosensory lateral line. New York: Springer-Verlag; 1989. pp. 187–215.
25. Kane DA, Kimmel CB. The zebrafish midblastula transition. Development. 1993;119:447–456. [PubMed]
26. Kaus S. The effect of aminoglycoside antibiotics on the lateral line organ of Aplocheilus lineatus (Cyprinodontidae). Acta Otolaryngol. 1987;103:291–298. [PubMed]
27. Kimmel CB, Warga RM, Kane DA. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development. 1994;120:265–276. [PubMed]
28. Li L, Nevill G, Forge A. Two modes of hair cell loss from the vestibular sensory epithelia of the guinea pig inner ear. J. Comp. Neurol. 1995;355:405–417. [PubMed]
29. Lombarte A, Yan HY, Popper AN, Chang JS, Platt C. Damage and regeneration of hair cell ciliary bundles in a fish ear following treatment with gentamicin. Hear. Res. 1993;64:166–174. doi: 10.1016/0378-5955(93)90002-I. [PubMed] [Cross Ref]
30. Matsui J, Oesterle E, Stone J, Rubel E. Characterization of damage and regeneration in cultured avian utricles. J. Assoc. Res. Otolaryngol. 2000;1:46–63. [PMC free article] [PubMed]
31. Matsui JI, Ogilvie JM, Warchol ME. Inhibition of caspases prevents ototoxic and ongoing hair cell death. J. Neurosci. 2002;22:1218–1227. [PubMed]
32. Metcalfe WK, Kimmel CB, Schabtach E. Anatomy of the posterior lateral line system in young larvae of the zebrafish. J. Comp. Neurol. 1985;233:377–389. [PubMed]
33. Montgomery J, Carton G, Voigt R, Baker C, Diebel C. Sensory processing of water currents by fishes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:1325–1327. doi: 10.1098/rstb.2000.0693. [PMC free article] [PubMed] [Cross Ref]
34. Muller M, Smolders JW. Hair cell regeneration after local application of gentamicin at the round window of the cochlea in the pigeon. Hear. Res. 1998;120:25–36. doi: 10.1016/S0378-5955(98)00049-5. [PubMed] [Cross Ref]
35. Nakagawa T, Yamane H, Takayama M, Sunami K, Nakai Y. Dose-dependent response of vestibular hair cells of guinea pigs following streptomycin ototoxiation. Acta Otolaryngol. 1998;118:530–533. doi: 10.1080/00016489850154676. [PubMed] [Cross Ref]
36. Nicolson T, Rusch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein–Volhard C. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron. 1998;20:271–283. [PubMed]
37. Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, Walton KM, Ylikoski J. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J. Neurosci. 2000;20:43–50. [PubMed]
38. Pujol R, Raible DW, Cunningham DE, Rubel EW. Ultrastructure of normal and neomycin-exposed zebrafish lateral line hair cells. Assoc. Res. Otolaryngol. 2002;25:Abstr. 577.
39. Raible DW, Kruse GJ. Organization of the lateral line system in embryonic zebrafish. J. Comp. Neurol. 2000;421:189–198. doi: 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.3.CO;2-B. [PubMed] [Cross Ref]
40. Roberson DW, Rubel EW. Cell division in the gerbil cochlea after acoustic trauma. Am. J. Otol. 1994;15:28–34. [PubMed]
41. Roberson DW, Kreig CS, Rubel EW. Light microscopic evidence that direct transdifferentiation gives rise to new hair cells in regenerating avian auditory epithelium. Aud. Neurosci. 1996;2:195–205.
42. Rubel EW. Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M, editor. Handbook of Sensory Physiology, Vol. IX, Development of Sensory Systems. New York: Springer-Verlag; 1978. pp. 135–237.
43. Schuknecht H. Pathology of the Ear. Boston: Harvard University Press; 1974.
44. Smolders JW. Functional recovery in the avian ear after hair cell regeneration. Audiol. Neurootol. 1999;4:286–302. doi: 10.1159/000013853. [PubMed] [Cross Ref]
45. Song J, Yan HY, Popper AN. Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear. Res. 1995;91:63–71. doi: 10.1016/0378-5955(95)00170-0. [PubMed] [Cross Ref]
46. Steyger PS, Burton M, Hawkins JR, Schuff NR, Baird RA. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs. Int. J. Dev. Neurosci. 1997;15:417–432. doi: 10.1016/S0736-5748(96)00101-3. [PubMed] [Cross Ref]
47. Stone JS, Rubel EW. Cellular studies of auditory hair cell regeneration in birds. Proc. Natl. Acad. Sci. U.S.A. 2000a;97:11714–11721. [PMC free article] [PubMed]
48. Stone JS, Rubel EW. Temporal, spatial, and morphologic features of hair cell regeneration in the avian basilar papilla. J. Comp. Neurol. 2000b;417:1–16. [PubMed]
49. Stone JS, Leano SG, Baker LP, Rubel EW. Hair cell differentiation in chick cochlear epithelium after aminoglycoside toxicity: in vivo and in vitro observations. J. Neurosci. 1996;16:6157–6174. [PubMed]
50. Warchol ME, Corwin JT. Regenerative proliferation in organ cultures of the avian cochlea: identification of the initial progenitors and determination of the latency of the proliferative response. J. Neurosci. 1996;16:5466–5477. [PubMed]
51. Weisleder P, Rubel EW. Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. J. Comp. Neurol. 1993;331:97–110. [PubMed]
52. Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 4th ed. Eugene, OR: University of Oregon Press; 2000.
53. Whitfield TT, Granato M, van Eeden FJ, Schach U, Brand M, Furutani–Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein–Volhard C. Mutations affecting development of the zebrafish inner ear and lateral line. Development. 1996;123:241–254. [PubMed]
54. Williams JA, Holder N. Cell turnover in neuromasts of zebrafish larvae. Hear. Res. 2000;143:171–181. doi: 10.1016/S0378-5955(00)00039-3. [PubMed] [Cross Ref]
55. Yan HY, Saidel WM, Chang JS, Presson JC, Popper AN. Sensory hair cells of a fish ear: evidence of multiple types based on ototoxicity sensitivity. Proc. R. Soc. Lond. B Biol. Sci. 1991;245:133–138. [PubMed]
56. Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U. Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear. Res. 2002;163:71–81. doi: 10.1016/S0378-5955(01)00380-X. [PubMed] [Cross Ref]

Articles from JARO: Journal of the Association for Research in Otolaryngology are provided here courtesy of Association for Research in Otolaryngology

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...