• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. Sep 12, 1989; 17(17): 6865–6881.
PMCID: PMC318418

Characterization of yeast mitochondrial RNase P: an intact RNA subunit is not essential for activity in vitro.

Abstract

We have previously described a mitochondrial activity that removes 5' leaders from yeast mitochondrial precursor tRNAs and suggested that it is a mitochondrial RNase P. Here we demonstrate that the cleavage reaction results in a 5' phosphate on the tRNA product and thus the activity is analogous to that of other RNase Ps. A mitochondrial gene called the tRNA synthesis locus encodes an A + U-rich RNA required for this activity in vivo. Two regions of this RNA display sequence similarity to conserved sequences in bacterial RNase P RNAs. This sequence similarity coupled with the analogous activities of the enzymes has led us to conclude that the RNAs are homologous and that the tRNA synthesis locus does code for the mitochondrial RNase P RNA subunit. The smallest and most abundant transcript of the tRNA synthesis locus is 490 nucleotides long. However, during purification of the holoenzyme, RNA is degraded and pieces of the original RNA are sufficient to support RNase P activity in vitro.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Manam S, Van Tuyle GC. Separation and characterization of 5'- and 3'-tRNA processing nucleases from rat liver mitochondria. J Biol Chem. 1987 Jul 25;262(21):10272–10279. [PubMed]
  • Doersen CJ, Guerrier-Takada C, Altman S, Attardi G. Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem. 1985 May 25;260(10):5942–5949. [PubMed]
  • Hollingsworth MJ, Martin NC. RNase P activity in the mitochondria of Saccharomyces cerevisiae depends on both mitochondrion and nucleus-encoded components. Mol Cell Biol. 1986 Apr;6(4):1058–1064. [PMC free article] [PubMed]
  • Kole R, Altman S. Properties of purified ribonuclease P from Escherichia coli. Biochemistry. 1981 Mar 31;20(7):1902–1906. [PubMed]
  • Reed RE, Baer MF, Guerrier-Takada C, Donis-Keller H, Altman S. Nucleotide sequence of the gene encoding the RNA subunit (M1 RNA) of ribonuclease P from Escherichia coli. Cell. 1982 Sep;30(2):627–636. [PubMed]
  • Gardiner K, Pace NR. RNase P of Bacillus subtilis has a RNA component. J Biol Chem. 1980 Aug 25;255(16):7507–7509. [PubMed]
  • Reich C, Gardiner KJ, Olsen GJ, Pace B, Marsh TL, Pace NR. The RNA component of the Bacillus subtilis RNase P. Sequence, activity, and partial secondary structure. J Biol Chem. 1986 Jun 15;261(17):7888–7893. [PubMed]
  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. [PubMed]
  • Guerrier-Takada C, Haydock K, Allen L, Altman S. Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry. 1986 Apr 8;25(7):1509–1515. [PubMed]
  • Gardiner KJ, Marsh TL, Pace NR. Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem. 1985 May 10;260(9):5415–5419. [PubMed]
  • James BD, Olsen GJ, Liu JS, Pace NR. The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell. 1988 Jan 15;52(1):19–26. [PubMed]
  • Akaboshi E, Guerrier-Takada C, Altman S. Veal heart ribonuclease P has an essential RNA component. Biochem Biophys Res Commun. 1980 Sep 30;96(2):831–837. [PubMed]
  • Krupp G, Cherayil B, Frendewey D, Nishikawa S, Söll D. Two RNA species co-purify with RNase P from the fission yeast Schizosaccharomyces pombe. EMBO J. 1986 Jul;5(7):1697–1703. [PMC free article] [PubMed]
  • Bartkiewicz M, Gold H, Altman S. Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. Genes Dev. 1989 Apr;3(4):488–499. [PubMed]
  • Gold HA, Altman S. Reconstitution of RNAase P activity using inactive subunits from E. coli and HeLa cells. Cell. 1986 Jan 31;44(2):243–249. [PubMed]
  • Tzagoloff A, Myers AM. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. [PubMed]
  • Chen JY, Martin NC. Biosynthesis of tRNA in yeast mitochondria. An endonuclease is responsible for the 3'-processing of tRNA precursors. J Biol Chem. 1988 Sep 25;263(27):13677–13682. [PubMed]
  • Miller DL, Martin NC, Pham HD, Donelson JE. Sequence analysis of two yeast mitochondrial DNA fragments containing the genes for tRNA Ser UCR and tRNA Phe UUY. J Biol Chem. 1979 Nov 25;254(22):11735–11740. [PubMed]
  • Martin NC, Underbrink-Lyon K. A mitochondrial locus is necessary for the synthesis of mitochondrial tRNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4743–4747. [PMC free article] [PubMed]
  • Palleschi C, Francisci S, Zennaro E, Frontali L. Expression of the clustered mitochondrial tRNA genes in Saccharomyces cerevisiae: transcription and processing of transcripts. EMBO J. 1984 Jun;3(6):1389–1395. [PMC free article] [PubMed]
  • Underbrink-Lyon K, Miller DL, Ross NA, Fukuhara H, Martin NC. Characterization of a yeast mitochondrial locus necessary for tRNA biosynthesis. Deletion mapping and restriction mapping studies. Mol Gen Genet. 1983;191(3):512–518. [PubMed]
  • Miller DL, Martin NC. Characterization of the yeast mitochondrial locus necessary for tRNA biosynthesis: DNA sequence analysis and identification of a new transcript. Cell. 1983 Oct;34(3):911–917. [PubMed]
  • Robertson HD, Altman S, Smith JD. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem. 1972 Aug 25;247(16):5243–5251. [PubMed]
  • Kline L, Nishikawa S, Söll D. Partial purification of RNase P from Schizosaccharomyces pombe. J Biol Chem. 1981 May 25;256(10):5058–5063. [PubMed]
  • Hansen FG, Hansen EB, Atlung T. Physical mapping and nucleotide sequence of the rnpA gene that encodes the protein component of ribonuclease P in Escherichia coli. Gene. 1985;38(1-3):85–93. [PubMed]
  • Ogasawara N, Moriya S, von Meyenburg K, Hansen FG, Yoshikawa H. Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli. EMBO J. 1985 Dec 1;4(12):3345–3350. [PMC free article] [PubMed]
  • Vioque A, Arnez J, Altman S. Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli. J Mol Biol. 1988 Aug 20;202(4):835–848. [PubMed]
  • Guerrier-Takada C, Altman S. M1 RNA with large terminal deletions retains its catalytic activity. Cell. 1986 Apr 25;45(2):177–183. [PubMed]
  • Herbert CJ, Labouesse M, Dujardin G, Slonimski PP. The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J. 1988 Feb;7(2):473–483. [PMC free article] [PubMed]
  • Akins RA, Lambowitz AM. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell. 1987 Jul 31;50(3):331–345. [PubMed]
  • Nomura T, Ishihama A. A novel function of RNase P from Escherichia coli: processing of a suppressor tRNA precursor. EMBO J. 1988 Nov;7(11):3539–3545. [PMC free article] [PubMed]
  • Laski FA, Alzner-DeWeerd B, RajBhandary UL, Sharp PA. Expression of a X. laevis tRNATyr gene in mammalian cells. Nucleic Acids Res. 1982 Aug 11;10(15):4609–4626. [PMC free article] [PubMed]
  • Silberklang M, Gillum AM, RajBhandary UL. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. [PubMed]
  • Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. [PubMed]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed]
  • England TE, Bruce AG, Uhlenbeck OC. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...