Logo of narLink to Publisher's site
Nucleic Acids Res. 1992 May 25; 20(10): 2553–2557.
PMCID: PMC312392

Analysis of nonuniformity in intron phase distribution.


The distribution of different intron groups with respect to phases has been analyzed. It has been established that group II introns and nuclear introns have a minimum frequency of phase 2 introns. Since the phase of introns is an extremely conservative measure the observed minimum reflects evolutionary processes. A sample of all known, group I introns was too small to provide a valid characteristic of their phase distribution. The findings observed for the unequal distribution of phases cannot be explained solely on the basis of the mobile properties of introns. One of the most likely explanations for this nonuniformity in the intron phase distribution is the process of exon shuffling. It is proposed that group II introns originated at the early stages of evolution and were involved in the process of exon shuffling.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (999K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Sharp PA. Speculations on RNA splicing. Cell. 1981 Mar;23(3):643–646. [PubMed]
  • Rogers JH. The role of introns in evolution. FEBS Lett. 1990 Aug 1;268(2):339–343. [PubMed]
  • Michel F, Jacquier A, Dujon B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie. 1982 Oct;64(10):867–881. [PubMed]
  • Davies RW, Waring RB, Ray JA, Brown TA, Scazzocchio C. Making ends meet: a model for RNA splicing in fungal mitochondria. Nature. 1982 Dec 23;300(5894):719–724. [PubMed]
  • Cech TR. Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. Gene. 1988 Dec 20;73(2):259–271. [PubMed]
  • Chu FK, Maley GF, Maley F, Belfort M. Intervening sequence in the thymidylate synthase gene of bacteriophage T4. Proc Natl Acad Sci U S A. 1984 May;81(10):3049–3053. [PMC free article] [PubMed]
  • Gott JM, Shub DA, Belfort M. Multiple self-splicing introns in bacteriophage T4: evidence from autocatalytic GTP labeling of RNA in vitro. Cell. 1986 Oct 10;47(1):81–87. [PubMed]
  • Shub DA, Gott JM, Xu MQ, Lang BF, Michel F, Tomaschewski J, Pedersen-Lane J, Belfort M. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1151–1155. [PMC free article] [PubMed]
  • Goodrich-Blair H, Scarlato V, Gott JM, Xu MQ, Shub DA. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell. 1990 Oct 19;63(2):417–424. [PubMed]
  • Wild MA, Gall JG. An intervening sequence in the gene coding for 25S ribosomal RNA of Tetrahymena pigmentosa. Cell. 1979 Mar;16(3):565–573. [PubMed]
  • Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature. 1988 Aug 11;334(6182):519–522. [PubMed]
  • Muscarella DE, Vogt VM. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell. 1989 Feb 10;56(3):443–454. [PubMed]
  • Kuhsel MG, Strickland R, Palmer JD. An ancient group I intron shared by eubacteria and chloroplasts. Science. 1990 Dec 14;250(4987):1570–1573. [PubMed]
  • Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science. 1990 Dec 14;250(4987):1566–1570. [PubMed]
  • Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. [PubMed]
  • Christopher DA, Hallick RB. Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucleic Acids Res. 1989 Oct 11;17(19):7591–7608. [PMC free article] [PubMed]
  • Kjems J, Jensen J, Olesen T, Garrett RA. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis. Can J Microbiol. 1989 Jan;35(1):210–214. [PubMed]
  • Lambowitz AM. Infectious introns. Cell. 1989 Feb 10;56(3):323–326. [PubMed]
  • Hickey DA, Benkel BF, Abukashawa SM. A general model for the evolution of nuclear pre-mRNA introns. J Theor Biol. 1989 Mar 7;137(1):41–53. [PubMed]
  • Craik CS, Sprang S, Fletterick R, Rutter WJ. Intron-exon splice junctions map at protein surfaces. Nature. 1982 Sep 9;299(5879):180–182. [PubMed]
  • Ohshima Y, Gotoh Y. Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and like sequences. J Mol Biol. 1987 May 20;195(2):247–259. [PubMed]
  • Csank C, Taylor FM, Martindale DW. Nuclear pre-mRNA introns: analysis and comparison of intron sequences from Tetrahymena thermophila and other eukaryotes. Nucleic Acids Res. 1990 Sep 11;18(17):5133–5141. [PMC free article] [PubMed]
  • Gilbert W. Why genes in pieces? Nature. 1978 Feb 9;271(5645):501–501. [PubMed]
  • Marchionni M, Gilbert W. The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell. 1986 Jul 4;46(1):133–141. [PubMed]
  • Shih MC, Heinrich P, Goodman HM. Intron existence predated the divergence of eukaryotes and prokaryotes. Science. 1988 Nov 25;242(4882):1164–1166. [PubMed]
  • Quigley F, Martin WF, Cerff R. Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2672–2676. [PMC free article] [PubMed]
  • Dorit RL, Schoenbach L, Gilbert W. How big is the universe of exons? Science. 1990 Dec 7;250(4986):1377–1382. [PubMed]
  • Go M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature. 1981 May 7;291(5810):90–92. [PubMed]
  • Lonberg N, Gilbert W. Intron/exon structure of the chicken pyruvate kinase gene. Cell. 1985 Jan;40(1):81–90. [PubMed]
  • Stone EM, Rothblum KN, Schwartz RJ. Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene. Nature. 1985 Feb 7;313(6002):498–500. [PubMed]
  • Südhof TC, Goldstein JL, Brown MS, Russell DW. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. [PubMed]
  • Wong Z, Royle NJ, Jeffreys AJ. A novel human DNA polymorphism resulting from transfer of DNA from chromosome 6 to chromosome 16. Genomics. 1990 Jun;7(2):222–234. [PubMed]
  • Welch HM, Darby JK, Pilz AJ, Ko CM, Carritt B. Transposition, amplification, and divergence in the origin of the DNF15 loci, a polymorphic repetitive sequence family on chromosomes 1 and 3. Genomics. 1989 Oct;5(3):423–430. [PubMed]
  • Senapathy P. Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2133–2137. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...