Logo of narLink to Publisher's site
Nucleic Acids Res. Aug 26, 1986; 14(16): 6711–6719.
PMCID: PMC311675

Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging.


DNA, isolated from age-synchronous senescent populations of Caenorhabditis elegans has been quantitatively and qualitatively analyzed for the presence of 5-methylcytosine. High performance liquid chromatography on two wild-type and several mutant strains of C. elegans failed to detect any 5-methylcytosine. The restriction endonuclease isoschizomers, HpaII and MspI, were used to digest genomic DNA after CsCl purification and failed to detect any 5' cytosine methylation at any age. We conclude that C. elegans does not contain detectable (0.01 mole percent) levels of 5-methylcytosine.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (811K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Shmookler Reis RJ, Goldstein S. Variability of DNA methylation patterns during serial passage of human diploid fibroblasts. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3949–3953. [PMC free article] [PubMed]
  • Goldstein S, Shmookler Reis RJ. Methylation patterns in the gene for the alpha subunit of chorionic gonadotropin are inherited with variable fidelity in clonal lineages of human fibroblasts. Nucleic Acids Res. 1985 Oct 11;13(19):7055–7065. [PMC free article] [PubMed]
  • Mays-Hoopes LL, Brown A, Huang RC. Methylation and rearrangement of mouse intracisternal a particle genes in development, aging, and myeloma. Mol Cell Biol. 1983 Aug;3(8):1371–1380. [PMC free article] [PubMed]
  • Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 1981 Apr 27;653(2):204–218. [PubMed]
  • Klass M, Nguyen PN, Dechavigny A. Age-correlated changes in the DNA template in the nematode Caenorhabditis elegans. Mech Ageing Dev. 1983 Jul-Aug;22(3-4):253–263. [PubMed]
  • Sharma HK, Prasanna HR, Lane RS, Rothstein M. The effect of age on enolase turnover in the free-living nematode, Turbatrix aceti. Arch Biochem Biophys. 1979 Apr 15;194(1):275–282. [PubMed]
  • Emmons SW, Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell. 1984 Mar;36(3):599–605. [PubMed]
  • Johnson TE, Wood WB. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6603–6607. [PMC free article] [PubMed]
  • Emmons SW, Yesner L, Ruan KS, Katzenberg D. Evidence for a transposon in Caenorhabditis elegans. Cell. 1983 Jan;32(1):55–65. [PubMed]
  • Emmons SW, Klass MR, Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1333–1337. [PMC free article] [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Rigby PW, Dieckmann M, Rhodes C, Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. [PubMed]
  • Liao LW, Rosenzweig B, Hirsh D. Analysis of a transposable element in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3585–3589. [PMC free article] [PubMed]
  • Ruan K, Emmons SW. Extrachromosomal copies of transposon Tc1 in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4018–4022. [PMC free article] [PubMed]
  • Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980 Oct 24;8(20):4763–4776. [PMC free article] [PubMed]
  • Eastman EM, Goodman RM, Erlanger BF, Miller OJ. 5-methylcytosine in the DNA of the polytene chromosomes of the diptera Sciara coprophila, Drosophila melanogaster and D. persimilis. Chromosoma. 1980;79(2):225–239. [PubMed]
  • Proffitt JH, Davie JR, Swinton D, Hattman S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984 May;4(5):985–988. [PMC free article] [PubMed]
  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 1982 Sep 6;146(1):148–152. [PubMed]
  • Warner AH, Bagshaw JC. Absence of detectable 5-methylcytosine in DNA of embryos of the brine shrimp, Artemia. Dev Biol. 1984 Mar;102(1):264–267. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...