• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of narLink to Publisher's site
Nucleic Acids Res. May 25, 1995; 23(10): 1750–1757.
PMCID: PMC306932

RNA polymerase III promoter and terminator elements affect Alu RNA expression.


Promoter elements derived from the 7SL RNA gene stimulate RNA polymerase III (Pol III) directed Alu transcription in vitro. These elements also stimulate expression of Alus transfected into 293 cells, but transcripts from these same constructs are undetectable in HeLa cells. A terminator resembling the terminator for the 7SL RNA gene has no effect on in vitro Alu template activity, but increases expression in vivo in a position independent manner. Alu transcripts generated from templates with and without this terminator have identical half-lives, indicating that this terminator stimulates expression by increasing template activity. Together, these results show that Alu expression may be regulated at multiple levels and can respond to cis-acting elements. This new found ability to express Alu transcripts by transient transfection provides an opportunity to monitor their post-transcriptional fate. Primary Alu transcripts are not extensively adenylated or deadenylated following transcription, but are short-lived compared to 118 nt scAlu RNA. In addition to Alu RNA, transfected templates encode scAlu RNA, but very high levels of Alu RNA expression does not increase the abundance of scAluRNA. ScAluRNA is not merely a transient RNA degradation product, but is instead tightly regulated by factors other than the abundance of primary transcripts.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. [PubMed]
  • Deininger PL, Batzer MA, Hutchison CA, 3rd, Edgell MH. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. [PubMed]
  • Schmid C, Maraia R. Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev. 1992 Dec;2(6):874–882. [PubMed]
  • Liu WM, Schmid CW. Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res. 1993 Mar 25;21(6):1351–1359. [PMC free article] [PubMed]
  • Sinnett D, Richer C, Deragon JM, Labuda D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J Mol Biol. 1992 Aug 5;226(3):689–706. [PubMed]
  • Liu WM, Maraia RJ, Rubin CM, Schmid CW. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 1994 Mar 25;22(6):1087–1095. [PMC free article] [PubMed]
  • Panning B, Smiley JR. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol. 1993 Jun;13(6):3231–3244. [PMC free article] [PubMed]
  • Jang KL, Latchman DS. HSV infection induces increased transcription of Alu repeated sequences by RNA polymerase III. FEBS Lett. 1989 Dec 4;258(2):255–258. [PubMed]
  • Liu WM, Chu WM, Choudary PV, Schmid CW. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 1995 May 25;23(10):1758–1765. [PMC free article] [PubMed]
  • Englander EW, Wolffe AP, Howard BH. Nucleosome interactions with a human Alu element. Transcriptional repression and effects of template methylation. J Biol Chem. 1993 Sep 15;268(26):19565–19573. [PubMed]
  • Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J. 1993 Mar;12(3):1141–1151. [PMC free article] [PubMed]
  • Ullu E, Weiner AM. Human genes and pseudogenes for the 7SL RNA component of signal recognition particle. EMBO J. 1984 Dec 20;3(13):3303–3310. [PMC free article] [PubMed]
  • Ullu E, Weiner AM. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature. 318(6044):371–374. [PubMed]
  • Bredow S, Sürig D, Müller J, Kleinert H, Benecke BJ. Activating-transcription-factor (ATF) regulates human 7S L RNA transcription by RNA polymerase III in vivo and in vitro. Nucleic Acids Res. 1990 Dec 11;18(23):6779–6784. [PMC free article] [PubMed]
  • Leeflang EP, Liu WM, Chesnokov IN, Schmid CW. Phylogenetic isolation of a human Alu founder gene: drift to new subfamily identity [corrected]. J Mol Evol. 1993 Dec;37(6):559–565. [PubMed]
  • Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol. 1993 Jul;13(7):4233–4241. [PMC free article] [PubMed]
  • Matera AG, Hellmann U, Hintz MF, Schmid CW. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 1990 Oct 25;18(20):6019–6023. [PMC free article] [PubMed]
  • Matera AG, Hellmann U, Schmid CW. A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol. 1990 Oct;10(10):5424–5432. [PMC free article] [PubMed]
  • Chang DY, Maraia RJ. A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro. J Biol Chem. 1993 Mar 25;268(9):6423–6428. [PubMed]
  • Maraia RJ, Chang DY, Wolffe AP, Vorce RL, Hsu K. The RNA polymerase III terminator used by a B1-Alu element can modulate 3' processing of the intermediate RNA product. Mol Cell Biol. 1992 Apr;12(4):1500–1506. [PMC free article] [PubMed]
  • Maraia RJ, Kenan DJ, Keene JD. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol. 1994 Mar;14(3):2147–2158. [PMC free article] [PubMed]
  • Leeflang EP, Liu WM, Hashimoto C, Choudary PV, Schmid CW. Phylogenetic evidence for multiple Alu source genes. J Mol Evol. 1992 Jul;35(1):7–16. [PubMed]
  • Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. [PubMed]
  • Hickman MA, Malone RW, Lehmann-Bruinsma K, Sih TR, Knoell D, Szoka FC, Walzem R, Carlson DM, Powell JS. Gene expression following direct injection of DNA into liver. Hum Gene Ther. 1994 Dec;5(12):1477–1483. [PubMed]
  • Sakamoto K, Fordis CM, Corsico CD, Howard TH, Howard BH. Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences. J Biol Chem. 1991 Feb 15;266(5):3031–3038. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...