Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Mar 1987; 84(5): 1142–1146.
PMCID: PMC304382

Promoter mapping and cell cycle regulation of flagellin gene transcription in Caulobacter crescentus.


Caulobacter crescentus contains a 25- and a 27-kDa flagellin, which are assembled into the flagellar filament, and a 29-kDa flagellin, which is related in sequence but is of unknown function. We have used DNA sequence analysis and nuclease S1 assays to map the in vivo transcription start sites of the three flagellin genes and to study their regulation. These experiments lead to several conclusions. First, copies of the 29-, 25-, and 27-kDa flagellin genes are organized in a tandem array in the flaEY gene cluster of C. crescentus. Second, flagellin genes are under transcriptional control and each gene is expressed with a characteristic periodicity in the cell cycle. Third, flagellin gene promoters contain conserved nucleotide sequence elements at -13, -24, and -100 that are homologous to the fla genes in the hook gene cluster. The -13 and -24 sequences conform to a fla gene promoter consensus sequence (C/TTGGCC/GC-N5-TTGC) that is similar in sequence to the -12, -24 consensus sequence of the Klebsiella pneumonia nif gene promoters. Fourth, the sequence element at approximately -100 in the 25- and the 27-kDa flagellin genes is homologous to a 19-base-pair sequence [designated previously as II-1; see Chen, L.-S., Mullin, D. M. & Newton, A. (1986) Proc. Natl. Acad. Sci. USA 83, 2860-2864]at -101 in the promoter of transcription unit II of the hook gene cluster; the two flagellin genes, like the fla genes examined in the hook gene cluster that contain the -100 element, are under positive control by transcription unit III of the hook gene cluster. This result supports a model in which the timing of fla gene transcription in the C. crescentus cell cycle is determined in part by a cascade of trans-acting regulatory gene products.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Osley MA, Sheffery M, Newton A. Regulation of flagellin synthesis in the cell cycle of caulobacter: dependence on DNA replication. Cell. 1977 Oct;12(2):393–400. [PubMed]
  • Sheffery M, Newton A. Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell. 1981 Apr;24(1):49–57. [PubMed]
  • Lagenaur C, Agabian N. Caulobacter flagellar organelle: synthesis, compartmentation, and assembly. J Bacteriol. 1978 Sep;135(3):1062–1069. [PMC free article] [PubMed]
  • Weissborn A, Steinmann HM, Shapiro L. Characterization of the proteins of the Caulobacter crescentus flagellar filament. Peptide analysis and filament organization. J Biol Chem. 1982 Feb 25;257(4):2066–2074. [PubMed]
  • Gill PR, Agabian N. A comparative structural analysis of the flagellin monomers of Caulobacter crescentus indicates that these proteins are encoded by two genes. J Bacteriol. 1982 May;150(2):925–933. [PMC free article] [PubMed]
  • Gill PR, Agabian N. The nucleotide sequence of the Mr = 28,500 flagellin gene of Caulobacter crescentus. J Biol Chem. 1983 Jun 25;258(12):7395–7401. [PubMed]
  • Ohta N, Chen LS, Newton A. Isolation and expression of cloned hook protein gene from Caulobacter crescentus. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4863–4867. [PMC free article] [PubMed]
  • Ohta N, Swanson E, Ely B, Newton A. Physical mapping and complementation analysis of transposon Tn5 mutations in Caulobacter crescentus: organization of transcriptional units in the hook gene cluster. J Bacteriol. 1984 Jun;158(3):897–904. [PMC free article] [PubMed]
  • Milhausen M, Gill PR, Parker G, Agabian N. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6847–6851. [PMC free article] [PubMed]
  • Purucker M, Bryan R, Amemiya K, Ely B, Shapiro L. Isolation of a Caulobacter gene cluster specifying flagellum production by using nonmotile Tn5 insertion mutants. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6797–6801. [PMC free article] [PubMed]
  • Ohta N, Chen LS, Swanson E, Newton A. Transcriptional regulation of a periodically controlled flagellar gene operon in Caulobacter crescentus. J Mol Biol. 1985 Nov 5;186(1):107–115. [PubMed]
  • Chen LS, Mullin D, Newton A. Identification, nucleotide sequence, and control of developmentally regulated promoters in the hook operon region of Caulobacter crescentus. Proc Natl Acad Sci U S A. 1986 May;83(9):2860–2864. [PMC free article] [PubMed]
  • Milhausen M, Agabian N. Caulobacter flagellin mRNA segregates asymmetrically at cell division. Nature. 1983 Apr 14;302(5909):630–632. [PubMed]
  • Champer R, Bryan R, Gomes SL, Purucker M, Shapiro L. Temporal and spatial control of flagellar and chemotaxis gene expression during Caulobacter cell differentiation. Cold Spring Harb Symp Quant Biol. 1985;50:831–840. [PubMed]
  • Prentki P, Krisch HM. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. [PubMed]
  • Hohn B, Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Delaney AD. A DNA sequence handling program. Nucleic Acids Res. 1982 Jan 11;10(1):61–67. [PMC free article] [PubMed]
  • Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. [PMC free article] [PubMed]
  • Komeda Y. Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol. 1982 Apr;150(1):16–26. [PMC free article] [PubMed]
  • Beynon J, Cannon M, Buchanan-Wollaston V, Cannon F. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell. 1983 Sep;34(2):665–671. [PubMed]
  • Ausubel FM. Regulation of nitrogen fixation genes. Cell. 1984 May;37(1):5–6. [PubMed]
  • Hunt TP, Magasanik B. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8453–8457. [PMC free article] [PubMed]
  • Hirschman J, Wong PK, Sei K, Keener J, Kustu S. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7525–7529. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...