• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of bmcgenoBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Genomics
BMC Genomics. 2010; 11: 438.
Published online Jul 19, 2010. doi:  10.1186/1471-2164-11-438
PMCID: PMC3017778

Pig genome sequence - analysis and publication strategy

Abstract

Background

The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing.

Results

Assemblies of the BAC clone derived genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. A revised assembly (Sscrofa10) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30× genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication.

Conclusions

In this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results.

Background

The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium [1]. A Data Release Workshop convened in Toronto in May 2009 by Genome Canada and other funding agencies affirmed and extended the commitments to prepublication release of large data sets in the life sciences which were originally developed in the context of the Human Genome Project. The Toronto Statement [2] places obligations on the producers of such data sets, including genome sequence data, in respect of prepublication release of the data and confirms the principle that allows the data producers to publish the first global analyses of the data set. The data producers are encouraged to produce a citable statement or "marker paper" in which they describe the data set and their intentions in respect of analysis and publication. In this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results. These plans were presented to participants in the Pig Genome III conference held at the Wellcome Trust Sanger Institute, 2-4 November 2009.

Results

Pig genome sequence data

The sequence data from which a draft pig genome sequence will be assembled comprises hierarchical shotgun sequence data providing 4-6× genome coverage from BAC clones representing a minimal tile path across the genome plus > 30× genome coverage in whole genome shotgun sequence (WGS) data generated using Sanger (capillary) and next-gen (Illumina) technologies. The minimal tile path was identified from a high quality physical (BAC contig) map [3] and provides coverage of 98.3% of this physical map. As at 5th July 2010 the total length of the BAC-derived sequence contigs, prior to the removal of sequence redundancy between overlapping BAC clones, was 3.01 Gbp of which 156.3 Mbp was at finished quality. These sequence data were generated from 16,707 BAC clones of which 15,895 have been subjected to one round of automated pre-finishing.

Prepublication data release

In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement [2] the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication. Assemblies of the genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. The current assembly (Sscrofa9) was constructed entirely from the BAC-derived sequence data.

Analysis strategy

A revised assembly (Sscrofa10) is being constructed from the BAC clone derived sequence together with the WGS data. The publication of a draft genome sequence for the pig will be based on this new assembly. A series of analysis working groups have been established in consultation with the pig genome research community under the auspices of the SGSC in order to undertake genome-wide analyses of the genome sequence. These groups with their respective lead contacts are summarised in Table Table1.1. Details of the work of these groups will be posted on the SGSC website at http://www.piggenome.org.

Table 1
Swine Genome Sequencing Consortium genome sequence analysis groups

Publication strategy

The Swine Genome Sequencing [1] and Swine HAPMAP [4] consortia respectively propose to develop two summary papers for publication describing a) the sequencing and analysis of the pig genome and b) genetic variation and haplotype structures across a range of pig breeds and related Sus species. In addition, the consortia propose to develop a series of companion papers describing either the results from the analysis groups and/or results from other research projects that have been enabled by the publication of a draft sequence of the pig genome. The consortia would be pleased to hear from research groups with plans for manuscripts that could be included within the list of companion papers. Please address correspondence to either Alan Archibald alan.archibald/at/roslin.ed.ac.uk or Larry Schook schook/at/illinois.edu.

Discussion

The value of the pig genome sequence lies not only in shaping the continued use of pigs in agriculture and medical research but also in the realm of evolution and domestication (natural and artificial selection) [5]. The pig is an economically important species not only as a major source of meat-based protein but also increasingly as a model for biomedical research. For example, the pig has value as a model of a spectrum of human diseases that may be modelled less well in rodents, including obesity, arthritis and cardiovascular disease.

The domestic pig (Sus scrofa) is a eutherian mammal and a member of the Cetartiodactyla order, a clade distinct from rodent and primates that last shared a common ancestor with humans between 79 and 87 million years ago. The domestic pig belongs to the Suidea family that consists of multiple species, all found in Asia, Europe and Africa. The availability of this wide variety of pig species that diverged over a period of around 2 to 15 million years provides a rich resource to study genomic changes in relation to speciation. A well characterised pig genome sequence forms a template for the study of within and between species genetic variation. Our analysis of the pig genome sequence will be set in the context of parallel research on the genomes of closely related and contemporary Suids (e.g. Sus verrocus, Sus celebensis and Sus barbatus) and on within breed genetic variation using the 60 K pig SNP chip [4] and by re-sequencing.

Conclusions

The pig genome sequencing project has been conducted in an open international collaborative manner in the spirit of the Bermuda and Fort Lauderdale agreements. In accordance with the more recent Toronto Statement the sequence data have been released in advance of publication. In this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results.

Methods

Sequencing strategy

The pig genome has been sequenced following a hybrid approach representing a refinement of the strategy announced earlier [1] (Figure (Figure1).1). Briefly, BAC clones selected to represent a minimal tile path across the genome were identified from the high resolution physical (BAC contig) map [2] and were subjected to hierarchical shotgun sequencing. BAC clones from the CHORI-242 library prepared from DNA from a single Duroc sow (Duroc 2-14) were preferentially chosen for sequencing. The initial plan was to skim sequence the BAC clones to 3× coverage. In practice, both ends of 768 subclones for each BAC were sequenced (average read length of 707 bp) to provide ~4× coverage. Most BAC clones have subsequently been subjected to one round of automated pre-finishing by primer walking from the ends of the clone sequence contigs constructed from the initial 4× coverage skim sequencing. This hierarchical shotgun sequencing was primarily undertaken at the Wellcome Trust Sanger Institute, with additional clones sequenced by the National Institute of Agrobiological Sciences, Japan. In addition whole genome shotgun (WGS) sequence data were generated from DNA isolated from the same animal (Duroc 2-14). These WGS data were generated using both Sanger capillary sequencing at the Korean Livestock Research Institute and Illumina/Solexa sequencing at the Beijing Genomics Institute and the Wellcome Trust Sanger Institute.

Figure 1
Sequencing strategy - a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing.

Authors' contributions

All authors are members of the Swine Genome Sequencing Consortium (SGSC) under whose auspices the pig genome is being sequenced. They are responsible for securing the funding for, and the management of, the pig genome sequencing project. ALA, DM, JR, MFR and LBS are members of the SGSC Steering Committee. ALA, MF, DM, JR, MFR, HU and LBS are members of the SGSC Technical Committee. LBS, CC, ALA, MAMG, DM, JR, MF, MFR comprise the SGSC Manuscript Steering Committee which is directing the SGSC's analysis and publication strategy. JR and CC led the sequencing team at the Wellcome Trust Sanger Institute which generated the BAC clone derived sequence data, during the initial and later stages of the project, respectively. LBS and JR were co-directors of the USDA grant which provided ca. 50% of the project funding. MAMG was work package leader for the EC-funded project to sequence chromosomes 7 and 14. BH and MAMG were project leaders for the IPG-funded project to sequence chromosome 4. ALA was the PI for the BBSRC grant on annotation and analysis. MFR secured US pig industry funding for the project and led a pilot project to generate finished sequence for part of chromosome 17. JW led the Beijing Genomics Institute effort to generate WGS data using Illumina next-gen sequencing technology partially funded by a grant of which LB was the PI. K-TL led the team at the Korean Livestock Research Institute that has contributed WGS data using Sanger capillary technology. HU leads the team at Japanese National Institute of Agrobiological Sciences which contributed full length cDNA sequence and some BAC clone sequence data. DM leads the team which is validating the sequence assembly against a high resolution radiation hybrid map. Finally, some of the leadership roles of the authors in the analysis of the sequence data are highlighted in Table Table1.1. All authors have read and approved the manuscript.

Acknowledgements

The Swine Genome Sequencing Consortium is grateful to the following for funding support for the pig genome sequencing project: the USDA National Institute of Food and Agriculture, formerly the Cooperative State Research, Education and Extension Service; the Agence Nationale de la Recherche; European Union SABRE; the Institute for Pig Genetics, Netherlands; INRA Genescope, France; Iowa Pork Producers Association; Iowa State University; Korean National Livestock Research Institute; National Institute of Agrobiological Sciences, Japan; National Pork Board, U.S.; North Carolina Pork Council; North Carolina Agricultural Research Service; North Carolina State University; the University of Illinois; the "Pigs and Health" programme of the Danish Advanced Technology Foundation, Denmark; the Wellcome Trust Sanger Institute; The Roslin Institute, University of Edinburgh and Biotechnology and Biological Sciences Research Council, U.K.; the University of Illinois Livestock Genome Sequencing Initiative.

References

  • Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genom. 2005;6:251–255. doi: 10.1002/cfg.479. [PMC free article] [PubMed] [Cross Ref]
  • Toronto International Data Release Workshop Authors. Prepublication data release. Nature. 2009;461:168–70. doi: 10.1038/461168a. [PMC free article] [PubMed] [Cross Ref]
  • Humphray SJ, Scott CE, Clark R, Marron B, Plumb R, Bender C, Camm N, Davis J, Jenks A, Noon A, Patel M, Sehra H, Yang F, Rogatcheva MB, Milan D, Chardon P, Rohrer G, Nonneman D, de Jong P, Meyers SN, Archibald A, Beever JE, Schook LB, Rogers J. A high utility integrated map of the pig genome. Genome Biol. 2007;8(7):R139. doi: 10.1186/gb-2007-8-7-r139. [PMC free article] [PubMed] [Cross Ref]
  • Ramos AM, Crooijmans RPMA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Dehais P, Affara NA, Hansen MS, Hedegaard J, Hu Z-L, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Clark R, Churcher C, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE. p. e6524. [PMC free article] [PubMed] [Cross Ref]
  • Rohrer G, Beever JE, Rothschild MF, Schook L, Gibbs R, Weinstock G. Porcine genomic sequencing initiative. (NIH White Paper) 2002. http://www.animalgenome.org/pigs/community/PigWhitePaper/

Articles from BMC Genomics are provided here courtesy of BioMed Central

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

  • SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation[Database: The Journal of Biological Databas...]
    Piovesan D, Profiti G, Martelli PL, Fariselli P, Fontanesi L, Casadio R. Database: The Journal of Biological Databases and Curation. 2013bat065
  • Xenotransplantation-associated infectious risk: a WHO consultation[Xenotransplantation. 2012]
    Fishman JA, Scobie L, Takeuchi Y. Xenotransplantation. 2012; 19(2)72-81
  • The sequence and analysis of a Chinese pig genome[GigaScience. ]
    Fang X, Mou Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W, Sun X, Xiong Z, Yang L, Liu H, Fan D, Mao L, Ren L, Liu C, Wang J, Li K, Wang G, Yang S, Lai L, Zhang G, Li Y, Wang J, Bolund L, Yang H, Wang J, Feng S, Li S, Du Y. GigaScience. 116
  • Analyses of pig genomes provide insight into porcine demography and evolution[Nature. 2012]
    Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Silva DC, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshøj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Zas SR, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB. Nature. 2012 Nov 15; 491(7424)393-398
  • Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli[Journal of Animal Science and Biotechnology...]
    Zhao S, Zhu M, Chen H. Journal of Animal Science and Biotechnology. 3(1)34
See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...