Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 2010 Dec; 192(24): 6494–6496.
Published online 2010 Oct 1. doi:  10.1128/JB.01064-10
PMCID: PMC3008519

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production


Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Clostridial genomes were sequenced using a combination of Sanger (3× coverage, 8 kb, pMCL200), 454 (20× coverage), and Solexa methods. Standard sequencing protocols are listed on the Joint Genome Institute (JGI) website (http://www.jgi.doe.gov/sequencing/protocols/prots_production.html). Sanger and 454 reads were assembled as previously described (5). Automatic annotations were conducted for all draft genomes using the JGI-Oak Ridge National Laboratory (ORNL) annotation pipeline, and all draft genomes and annotations were loaded into the JGI Integrated Microbial Resource (IMG) for analysis (11). Due to difficulties in assembling and finishing low-GC, high-repeat genomes, many of the genomes targeted for sequencing could not be finished and are presented as a highquality permanent draft. Sequences available at the time of this analysis are listed in Table Table11 and are categorized based on the latest Bergey's taxonomy (9).

Clostridium genome sequencing projects related to biomass conversion and biofuels production


The biomass-converting clostridium sequencing project was initiated by the Clostridium Sequencing Consortium (see author list) through the Joint Genome Institute. The genome sequencing work was performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory, under contract no. DE-AC02-05CH11231, Lawrence Livermore National Laboratory, under contract no. DE-AC52-07NA27344, Los Alamos National Laboratory, under contract no. DE-AC02-06NA25396, and Oak Ridge National Laboratory, under contract no. DE-AC05-00OR22725. This work was supported by NSF-EPSC.R grant 105118300.


Published ahead of print on 1 October 2010.


1. Cook, G. M., F. A. Rainey, B. K. C. Patel, and H. W. Morgan. 1996. Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int. J. Syst. Bacteriol. 46:123-127. [PubMed]
2. Freier, D., C. P. Mothershed, and J. Wiegel. 1988. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54:204-211. [PMC free article] [PubMed]
3. Huhnke, R. L., R. S. Lewis, and R. S. Tanner. 27 April 2010. Isolation and characterization of novel clostridial species. U.S. patent 7,704,723.
4. Kozianowski, G., F. Canganella, F. A. Rainey, H. Hippe, and G. Antranikian. 1997. Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles 1:171-182. [PubMed]
5. Land, M., R. Pukall, B. Abt, M. Göker, M. Rohde, T. G. D. Rio, H. Tice, A. Copeland, J.-F. Cheng, S. Lucas, F. Chen, M. Nolan, D. Bruce, L. Goodwin, S. Pitluck, N. Ivanova, K. Mavromatis, G. Ovchinnikova, A. Pati, A. Chen, K. Palaniappan, L. Hauser, Y.-J. Chang, C. C. Jefferies, E. Saunders, T. Brettin, J. C. Detter, C. Han, P. Chain, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholtz, N. C. Kyrpides, H.-P. Klenk, and A. Lapidus. 2009. Complete genome sequence of Beutenbergia cavernae type strain (HKI 0122T). Stand. Genomic Sci. doi:.10.4056/sigs.1162 [PMC free article] [PubMed] [Cross Ref]
6. Larsen, L., P. Nielsen, and B. K. Ahring. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168:114-119. [PubMed]
7. Lee, Y.-E., M. K. Jain, C. Lee, S. E. Lowe, and J. G. Zeikus. 1993. Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfiricum ElO0-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Microbiol. 43:41-51.
8. Liou, J. S.-C., D. L. Balkwill, G. R. Drake, and R. S. Tanner. 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol. 55:2085-2091. [PubMed]
9. Ludwig, W., K. H. Schleifer, and W. B. Whitman. 2008. Revised roadmap to the phylum Firmicutes, 2nd ed., vol. 3. Springer, New York, NY.
10. Madden, R. H., M. J. Bryder, and N. J. Poole. 1982. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium papyrosolvens sp. nov. Int. J. Syst. Bacteriol. 32:87-91.
11. Markowitz, V. M., I. M. A. Chen, K. Palaniappan, K. Chu, E. Szeto, Y. Grechkin, A. Ratner, I. Anderson, A. Lykidis, K. Mavromatis, N. N. Ivanova, and N. C. Kyrpides. 2010. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 38:D382-D390. [PMC free article] [PubMed]
12. Ng, T. K., and J. G. Zeikus. 1981. Comparison of extracellular cellulase activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Appl. Environ. Microbiol. 42:231-240. [PMC free article] [PubMed]
13. Onyenwoke, R. U., V. V. Kevbrin, A. M. Lysenko, and J. Wiegel. 2007. Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park. Int. J. Syst. Evol. Microbiol. 57:2191-2193. [PubMed]
14. Patel, G. B., A. W. Khan, B. J. Agnew, and J. R. Colvin. 1980. Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. Int. J. Syst. Bacteriol. 30:179-185.
15. Petitdemange, E., F. Caillet, J. Giallo, and C. Gaudin. 1984. Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int. J. Syst. Bacteriol. 34:155-159.
16. Roh, Y., S. V. Liu, G. Li, H. Huang, T. J. Phelps, and J. Zhou. 2002. Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. 68:6013-6020. [PMC free article] [PubMed]
17. Sleat, R., R. A. Mah, and R. Robinson. 1984. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol. 48:88-93. [PMC free article] [PubMed]
18. Slobodkin, A. I., T. P. Tourova, B. B. Kuznetsov, N. A. Kostrikina, N. A. Chernyh, and E. A. Bonch-Osmolovskaya. 1999. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 49:1471-1478. [PubMed]
19. Wiegel, J., and L. G. Ljungdahl. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128:343-348.
20. Xing, D., N. Ren, Q. Li, M. Lin, A. Wang, and L. Zhao. 2006. Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int. J. Syst. Evol. Microbiol. 56:755-760. [PubMed]
21. Zeikus, J. G., P. W. Hegge, and M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:41-48.
22. Zhang, G., H. Dong, Z. Xu, D. Zhao, and C. Zhang. 2005. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl. Environ. Microbiol. 71:3213-3227. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)
PubReader format: click here to try


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence and PMC links.
  • MedGen
    Related information in MedGen
  • Nucleotide
    Primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...