Logo of arthrestherBioMed Centralbiomed central web sitesearchsubmit a manuscriptregisterthis articleArthritis Research & Therapy
Arthritis Res Ther. 2010; 12(Suppl 1): S4.
Published online Apr 14, 2010. doi:  10.1186/ar2885
PMCID: PMC2991777

Type 1 interferons and myositis

Abstract

Recent studies suggest a mechanistic role for molecules induced by type 1 interferons in the pathogenesis of some forms of myositis. For dermatomyositis, evidence that these molecules injure myofibers seems especially strong. In the group of disorders known as polymyositis, the study of blood samples suggests a potential role. It is unknown what drives the sustained presence of type 1 interferon-inducible molecules in these diseases, as the type 1 interferons themselves have not been specifically detected along with their downstream biomarkers. Therapeutic development for blockade of IFNα is in progress aided by the identification of blood genomic biomarkers.

Introduction

The inflammatory myopathies - including dermatomyositis (DM), inclusion body myositis, and polymyositis (PM) - are poorly understood autoimmune diseases affecting skeletal muscle. Evidence regarding the significance of type 1 interferons to these diseases, especially DM, is reviewed in the present article, with much of this material recently discussed elsewhere [1,2].

The type 1 interferons are a class of molecules that include IFNα and IFNβ. After binding to the type 1 interferon receptor (IFNAR) on target cells, these cytokines can stimulate the transcription of a set of genes, the type 1 interferon-inducible genes. Proteins abundantly produced from these genes' transcripts - such as myxovirus resistance protein A, interferon-stimulated gene 15 (ISG15), and 2',5'-oligoadenylate synthetase 1 - remain inside cells. They normally function as defenses against viral infections through a variety of means, such as inhibiting viral transcription, translation, or assembly of viral nucleocapsids. It is possible that the chronic intracellular overproduction of these transcripts and proteins might be directly harmful to cells, such as muscle fibers in myositis [3].

Myositis, pathology, and mechanisms

The varied forms of myositis have distinct clinical and pathological features (Figure (Figure1),1), and probably involve distinct mechanisms of tissue injury. DM, in addition to clinical skin involvement, has two unique pathological features (perifascicular atrophy and endothelial cell tubuloreticular inclusions) that distinguish it from other muscle diseases. Inclusion body myositis has a unique clinical distribution of involvement, with substantial weakness of the quadriceps and wrist and finger flexors, as well as specific suggestive pathological features including rimmed vacuoles. The broad category of PM is mainly distinguished by a collection of otherwise individually nonspecific features. Although frequently lumped together, DM and PM probably involve entirely different mechanisms of tissue injury.

Figure 1
Differing pathologies in myositis subtypes. The distribution of immune system cells differs among myositis subtypes. (a) In dermatomyositis, immune system cells are predominantly in the regions of connective tissue that lie between muscle fascicles and ...

Because type 1 interferons may have many effects on cells of the immune system, they may have roles in the varied immune responses present across multiple myositis subtypes. Yet studies to date suggest that only in DM are these molecules strongly and directly influencing molecular events in muscle.

Why focus on type 1 interferons in dermatomyositis mechanism?

Recognition that cytokines are present in myositis muscle biopsy samples began with immunohistochemical studies for cytokine proteins [4]. This approach is confounded by a number of technical and biological limitations [5], including nonspecific immunoreactivity, transient expression of cytokines, and their low concentration. For these reasons, some investigators turned to examining cytokine mRNA transcripts in muscle homogenates [6]. Initial PCR-based studies of cytokine transcripts including IFNα and IFNγ generally found no myositis subtype-specific differences compared with nonmyositis muscle - except for granulocyte-macrophage colony-stimulating factor, which was detected in 12 out of 15 myositis samples but in none out of 10 controls [6]. Many subsequent studies of cytokine transcripts and proteins (discussed in [7-9]) have reported variable and often conflicting results.

Because of the potential for transient expression and the low concentration of cytokines, downstream persisting effects of cytokines have been sought. Two types of biomarkers (macromolecular and molecular) provide strong evidence that DM muscle has experienced strong signaling of the type 1 interferon receptor. More than 25 years ago, tubuloreticular inclusions (also known as lupus inclusions) - macromolecular structures commonly visible with electron microscopy in DM muscle endothelial cells [10,11] and rarely seen in other forms of myositis - were recognized as downstream markers of type 1 interferon signaling. Tubuloreticular inclusions in circulating blood cells develop in patients treated with IFNα [12,13] and those in cultured endothelial cells and other cells develop directly in response to IFNα and IFNβ [14-16], but not IFNγ [13]. For uncertain reasons, no PubMed indexed publication made a connection between this tubuloreticular inclusion literature and DM over 20 years [17].

Over the past 8 years the marked overproduction of type 1 interferon-inducible transcripts and proteins in muscle has been found to be remarkably unique to DM in comparison with all other muscle diseases studied [2,18,19]. Microarray gene expression studies of muscle biopsy specimens measuring approximately 18,000 transcripts in each of 113 muscle biopsy samples from patients with a wide range of myopathies showed that only DM samples with perifascicular atrophy have marked elevation of type 1 interferon-inducible transcripts (Figure (Figure2a)2a) [2]. In analyses combining publicly available data, the remarkable specificity of these transcript abundances for DM is impressive. For example, the transcript for the type 1 interferon-inducible gene ISG15 was higher in muscle in all 28 biopsies from adults with DM and perifascicular atrophy and from children with juvenile DM than in every one of 199 non-DM biopsy samples from a wide range of neuromuscular diseases (Figure (Figure2b2b).

Figure 2
Genomic identification of type 1 interferon-inducible pathway activation in dermatomyositis muscle. (a) Analysis of 22,283 gene transcript probe sets (4,904 shown after filtering; one per row) in 113 muscle biopsy samples (one per column) disclosed a ...

Two type 1 interferon-inducible proteins have similarly been shown to be highly specific biomarkers of DM muscle. Myxovirus resistance protein A is impressively and uniquely (in comparison with other muscle diseases) abundant in DM myofibers with perifascicular atrophy and in DM capillaries (Figure (Figure3)3) [18]. ISG15, a ubiquitinlike modifier, is furthermore attached to many other proteins in DM muscle, the identities of which have not been determined (Figure (Figure2c).2c). Exposure of human skeletal muscle cell cultures to IFNα or IFNβ produces a similar picture of ISG15 conjugation present in human DM samples (Figure (Figure2c)2c) [2].

Figure 3
Myxovirus resistance protein A expression in dermatomyositis muscle. Image of whole muscle section stained for myxovirus resistance protein A (MxA) showing abundant myofiber protein expression (brown) preferentially in a perifascicular distribution. Adapted ...

DM is a systemic disease, involving muscle, skin, and, variably, other tissues. Skin gene expression profiling, reported only in abstract format to date [20], has similarly shown marked abundance of type 1 interferon-inducible transcripts. The topology of keratinocyte injury in DM skin is similar to that of myofiber injury in DM muscle [21].

Patients with dermatological features of DM who lack significant clinical evidence of muscle involvement have been classified as clinically amyopathic DM. Autoantibodies to a classic type 1 interferon-inducible protein IFIH1 (interferon induced with helicase C domain; also called MDA-5) have been recently identified [22]. Using optimized cutoff values in an ELISA assay, the presence of anti-IFIH1 antibodies in clinically amyopathic DM among 262 patients with a range of connective tissue diseases was 69% sensitive and 99.6% specific. Significant anti-IFIH1 autoantibody levels were present in 22 out of 32 patients with clinically amyopathic DM, but only in one of 35 patients with classic DM and in none of 53 patients with PM. These remarkably strong data both indicate a clinically valuable biomarker of clinically amyopathic DM and provide mechanistic evidence for some abnormality related to type 1 interferons in clinically amyopathic DM. The nature of this relationship is uncertain; one speculation is that IFIH1, a nuclear RNA helicase, is overproduced or altered in some way in clinically amyopathic DM, and evokes an autoantibody response.

A blood type 1 interferon-inducible signature

Blood gene expression profiling has also demonstrated marked abundance of these transcripts in patients with active DM, such as untreated patients, but also in PM (see below) [19]. One study that did not find marked type 1 interferon-inducible transcript abundance in DM blood samples had included almost only treated patients (11 out of 12 patients receiving prednisone; eight of these patients receiving an additional second immunosuppressant agent) [23]. Microarray experiments measure the abundance of 10,000s of transcripts simultaneously; any set of transcripts may be called a signature, but what is impressive about such experiments in DM and PM blood samples is the dominance of these gene expression patterns by type 1 interferon-inducible genes. In a study of 23 patients with DM and PM, at least 24 of the highest expressed 25 genes among approximately 38,000 genes studied are all known to be highly inducible by type 1 interferons [19].

The type 1 interferon-inducible transcript overproduction in DM and PM is highly correlated, within individual patients, with clinical measures of disease activity [19] (Figure (Figure44 and unpublished data). Although the absolute magnitude of the upregulation of this signature does not highly correlate with disease severity across patients, within individual patients the signature does track disease activity - a situation similar to the commonly used clinical biomarker creatine kinase.

Figure 4
Blood type 1 interferon-inducible gene expression correlation with disease activity. Downregulation of six type 1 interferon inducible genes in eight patients, correlating with improvement in clinical disease from time point 1 (active) to time point 2 ...

What drives the production of these downstream biomarkers of type 1 interferon signaling in DM muscle?

A fundamental question that has not been answered is what drives the production of type 1 interferon-inducible molecules in DM muscle. Specific elevation of type 1 interferon transcripts or proteins has not been demonstrated in DM muscle. Both microarray and real-time quantitative PCR do not show impressive differences, compared with other myositis samples, in transcripts encoding a range of IFNα subtypes or IFNβ in the same DM muscle samples that have marked upregulation (10-fold to 100-fold) of downstream type 1 interferon-inducible transcripts (unpublished data). Immunoblots from myositis samples similarly do not appear to show differential presence of IFNα or IFNβ protein in DM muscle (preliminary unpublished data).

This situation parallels that seen in systemic lupus erythematosus. Although studies performed almost 30 years ago detected molecules believed to be IFNα in 60 to 76% of systemic lupus erythematosus blood samples using functional antiviral assays sometimes in combination with neutralizing antibodies [24-27], the literature has been notable for the absence of detection of IFNα in systemic lupus erythematosus blood or tissue samples by direct methods such as ELISA, immunoblot, or mass spectrometry. For example, one study found measurable levels of IFNα protein by ELISA in only two out of 38 patients, while most of these same 38 samples showed marked increases in type 1 interferon-inducible transcripts [28]. The lack of direct detection of IFNα protein has been attributed to potential technical limitations, although unexpected results in science have often been assumed to be erroneous. A more recent functional assay looking at type 1 interferon-inducible transcription has similarly detected activity in systemic lupus erythematosus plasma [29].

The interpretation of the results of functional assays is complicated by potential type 1 interferon autocrine mechanisms. In mouse cells, autostimulation of the IFNAR by early secreted type 1 interferons results in marked amplification of IFNα production [30-33]. Anti-IFNα antibodies used in functional assays to neutralize sample IFNα could potentially diminish type 1 interferon-inducible gene transcription through neutralizing early secreted reporter cell IFNα, although this possibility is speculative.

For juvenile DM, the functional assay for gene transcription has been used for detection of serum type 1 interferon-inducing activity and similarly interpreted as indicating the presence of IFNα in some blood samples [34]. What is particularly remarkable about this study was the marked range of interferon-inducing activity of serum from healthy children and adults, which varies by over 100-fold and includes many healthy people whose activity exceeded the mean value for the juvenile DM population.

These data suggest that the marked production of type 1 interferon-inducible transcripts and proteins in DM muscle, probably by myofibers, might result from sustained activation of the type 1 interferon receptor IFNAR in the absence of excessive (compared with the wide range of normal) type 1 interferons, or through mechanisms even further downstream that bypass IFNAR. The most natural interpretation of the data to date suggests that what may turn out to be most crucial with regard to DM myofiber injury is not the abundance of a type 1 interferon, but rather sustained abnormal function of the IFNAR or a further downstream process.

Potential role for type 1 interferons in polymyositis and inclusion body myositis

PM is an umbrella term for patients with various forms of myositis that are difficult to classify. DM and PM have substantial differences with regard to abundance of type 1 interferon-inducible molecules in muscle biopsy samples (Figure (Figure5),5), yet marked overexpression of type 1 interferon-inducible genes has also been found in blood in PM [19]. Within PM muscle, inflammatory cells typically surround, displace, and sometimes invade muscle fibers. These cells include T cells, myeloid dendritic cells, macrophages, and plasma cells (reviewed in [3]). Type 1 interferons have multiple effects on these cell types, and it is possible that through these effects the type 1 interferon system is contributing to PM myofiber injury.

Figure 5
Distinct muscle expression of type 1 interferon-inducible genes in inflammatory myopathies. Distinct muscle expression of type 1 interferon-inducible genes in dermatomyositis (DM) compared with polymyositis (PM) and inclusion body myositis (IBM). Muscle ...

Patients with inclusion body myositis - a highly inflammatory disorder of muscle, as judged by abundance of immune system cells and transcripts in muscle - do not have high levels of muscle or blood type 1 interferon-inducible transcripts (Figure (Figure5),5), although a small proportion of patients may have modest elevation of such transcripts in blood alone. As in PM, the mechanistic interpretation of blood expression of these transcripts is uncertain, and could reflect less-specific effects driving immune cell development.

Predicted exacerbations with TNFα inhibition

TNFα appears to have an antagonistic relationship with type 1 interferons [35]. It may directly inhibit the generation of plasmacytoid dendritic cells from progenitor cells and may inhibit plasmacytoid dendritic cell production of type 1 interferons. Studies of etanercept in Sjogren's syndrome indeed showed that this drug increased type 1 interferon activity [36]. Accordingly, models that propose a significant role for type 1 interferons in the pathogenesis of myositis predict that TNFα inhibition might exacerbate myositis. Published experience with TNFα inhibition in patients with myositis appears to support this model. Two open-label studies of infliximab have been terminated before completion or had substantial dropout rates for reasons that included disease progression [37,38]. Although this class of drugs may prove useful in the management of some patients, currently it appears unlikely to be of more general use for myositis.

Conclusion: diagnostics and therapeutic development

The presence of marked overproduction of type 1 interferon-inducible transcripts in blood specimens from patients with active DM and PM has potential for diagnostic use [19]. These biomarkers may be able to distinguish these disorders from inclusion body myositis and other muscle diseases that sometimes present diagnostic uncertainty. Furthermore, they may be useful for therapeutic development. A phase 1b trial of anti-IFNα therapy has been initiated in DM and PM [39]. Entry criteria into this study include the presence of sufficiently high type 1 interferon-inducible gene expression in blood. Future studies targeting the IFNAR or further downstream events have strong rationale in DM, and perhaps in PM.

Abbreviations

DM: dermatomyositis; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; IFNAR: type 1 interferon receptor; ISG15: interferon-stimulated gene 15; PCR: polymerase chain reaction; PM: polymyositis; TNF: tumor necrosis factor.

Competing interests

SAG has worked as a consultant regarding clinical trial planning for MedImmune, LLC and has a Sponsored Research Agreement with MedImmune, LLC. SAG is an inventor of intellectual property pertaining to myositis diagnostics. SAG has National Institutes of Health funding and the publication of articles constitutes evidence of productivity that may be used to support future requests for National Institutes of Health funding.

Acknowledgements

The present work was supported by grants to SAG from the National Institutes of Health (R01NS43471 and R21NS057225), the Muscular Dystrophy Association (MDA3878), and MedImmune, LLC.

This article is part of Arthritis Research & Therapy Volume 12 Supplement 1: The role of IFN alpha in autoimmune disease. The full contents of the supplement are available online at http://arthritis-research.com/supplements/12/S1. Publication of the supplement has been supported with funding from MedImmune, LLC.

References

  • Greenberg SA. Inflammatory myopathies: disease mechanisms. Curr Opin Neurol. 2009;22:516–523. doi: 10.1097/WCO.0b013e3283311ddf. [PubMed] [Cross Ref]
  • Salajegheh M, Kong SW, Pinkus JL, Walsh RJ, Liao A, Nazareno R, Amato AA, Krastins B, Morehouse C, Higgs BW, Jallal B, Yao Y, Sarracino DA, Parker KC, Greenberg SA. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol. 2009;67:53–63. doi: 10.1002/ana.21805. [PMC free article] [PubMed] [Cross Ref]
  • Greenberg SA. Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology. 2007;69:2008–2019. doi: 10.1212/01.WNL.0000291619.17160.b8. [PubMed] [Cross Ref]
  • Isenberg DA, Rowe D, Shearer M, Novick D, Beverley PC. Localization of interferons and interleukin 2 in polymyositis and muscular dystrophy. Clin Exp Immunol. 1986;63:450–458. [PMC free article] [PubMed]
  • Emslie-Smith AM, Arahata K, Engel AG. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol. 1989;20:224–231. doi: 10.1016/0046-8177(89)90128-7. [PubMed] [Cross Ref]
  • Lundberg I, Brengman JM, Engel AG. Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J Neuroimmunol. 1995;63:9–16. doi: 10.1016/0165-5728(95)00122-0. [PubMed] [Cross Ref]
  • Figarella-Branger D, Civatte M, Bartoli C, Pellissier JF. Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve. 2003;28:659–682. doi: 10.1002/mus.10462. [PubMed] [Cross Ref]
  • Salomonsson S, Lundberg IE. Cytokines in idiopathic inflammatory myopathies. Autoimmunity. 2006;39:177–190. doi: 10.1080/08916930600622256. [PubMed] [Cross Ref]
  • Schmidt J, Barthel K, Wrede A, Salajegheh M, Bahr M, Dalakas MC. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain. 2008;131(Pt 5):1228–1240. [PMC free article] [PubMed]
  • Banker BQ. Dermatomyostis of childhood, ultrastructural alteratious of muscle and intramuscular blood vessels. J Neuropathol Exp Neurol. 1975;34:46–75. doi: 10.1097/00005072-197501000-00005. [PubMed] [Cross Ref]
  • Norton WL, Velayos E, Robison L. Endothelial inclusions in dermatomyositis. Ann Rheum Dis. 1970;29:67–72. doi: 10.1136/ard.29.1.67. [PMC free article] [PubMed] [Cross Ref]
  • Grimley PM, Davis GL, Kang YH, Dooley JS, Strohmaier J, Hoofnagle JH. Tubuloreticular inclusions in peripheral blood mononuclear cells related to systemic therapy with alpha-interferon. Lab Invest. 1985;52:638–649. [PubMed]
  • Rich SA, Owens TR, Bartholomew LE, Gutterman JU. Immune interferon does not stimulate formation of alpha and beta interferon induced human lupus-type inclusions. Lancet. 1983;1:127–128. doi: 10.1016/S0140-6736(83)91771-3. [PubMed] [Cross Ref]
  • Grimley PM, Rutherford MN, Kang YH, Williams T, Woody JN, Silverman RH. Formation of tubuloreticular inclusions in human lymphoma cells compared to the induction of 2'-5'-oligoadenylate synthetase by leucocyte interferon in dose-effect and kinetic studies. Cancer Res. 1984;44:3480–3488. [PubMed]
  • Kuyama J, Kanayama Y, Mizutani H, Katagiri S, Tamaki T, Yonezawa T, Tarui S, Morise H, Arimura H, Suyama T. Formation of tubuloreticular inclusions in mitogen-stimulated human lymphocyte cultures by endogenous or exogenous alpha-interferon. Ultrastruct Pathol. 1986;10:77–85. doi: 10.3109/01913128609015565. [PubMed] [Cross Ref]
  • Feldman D, Goldstein AL, Cox DC, Grimley PM. Cultured human endothelial cells treated with recombinant leukocyte A interferon. Tubuloreticular inclusion formation, antiproliferative effect, and 2',5' oligoadenylate synthetase induction. Lab Invest. 1988;58:584–589. [PubMed]
  • Greenberg SA, Amato AA. Uncertainties in the pathogenesis of adult dermatomyositis. Curr Opin Neurol. 2004;17:359–364. doi: 10.1097/00019052-200406000-00018. [PubMed] [Cross Ref]
  • Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, Barohn RJ, Saperstein DS, Briemberg HR, Ericsson M, Park P, Amato AA. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664–678. doi: 10.1002/ana.20464. [PubMed] [Cross Ref]
  • Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL, Beggs AH, Amato AA, Greenberg SA. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56:3784–3792. doi: 10.1002/art.22928. [PMC free article] [PubMed] [Cross Ref]
  • Kea B, Pesich R, Chung LS, Brown PO, Fiorentino D. Genomic analyses identify lipid metabolism abnormalities in dermatomyositis patients [abstract] J Invest Dermatol. 2007;127(Suppl 1):S12.
  • Greenberg SA, Fiorentino D. Similar topology of injury to keratinocytes and myofibres in dermatomyositis skin and muscle. Br J Dermatol. 2009;160:464–465. doi: 10.1111/j.1365-2133.2008.08967.x. [PubMed] [Cross Ref]
  • Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y, Fujita T, Kuwana M. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 2009;60:2193–2200. doi: 10.1002/art.24621. [PubMed] [Cross Ref]
  • Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, Ytterberg SR, Gregersen PK, Behrens TW, Reed AM. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13:59–68. doi: 10.2119/2006-00085.Baechler. [PMC free article] [PubMed] [Cross Ref]
  • Hooks JJ, Jordan GW, Cupps T, Moutsopoulos HM, Fauci AS, Notkins AL. Multiple interferons in the circulation of patients with systemic lupus erythematosus and vasculitis. Arthritis Rheum. 1982;25:396–400. doi: 10.1002/art.1780250406. [PubMed] [Cross Ref]
  • Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med. 1979;301:5–8. [PubMed]
  • Preble OT, Black RJ, Friedman RM, Klippel JH, Vilcek J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science. 1982;216:429–431. doi: 10.1126/science.6176024. [PubMed] [Cross Ref]
  • Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. 1982;25:401–406. doi: 10.1002/art.1780250407. [PubMed] [Cross Ref]
  • Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, Shark KB, Grande WJ, Hughes KM, Kapur V, Gregersen PK, Behrens TW. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100:2610–2615. doi: 10.1073/pnas.0337679100. [PMC free article] [PubMed] [Cross Ref]
  • Hua J, Kirou K, Lee C, Crow MK. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 2006;54:1906–1916. doi: 10.1002/art.21890. [PubMed] [Cross Ref]
  • Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity. 2000;13:539–548. doi: 10.1016/S1074-7613(00)00053-4. [PubMed] [Cross Ref]
  • Sato M, Tanaka N, Hata N, Oda E, Taniguchi T. Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett. 1998;425:112–116. doi: 10.1016/S0014-5793(98)00210-5. [PubMed] [Cross Ref]
  • Marie I, Durbin JE, Levy DE. Differential viral induction of distinct interferonalpha genes by positive feedback through interferon regulatory factor-7. Embo J. 1998;17:6660–6669. doi: 10.1093/emboj/17.22.6660. [PMC free article] [PubMed] [Cross Ref]
  • Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett. 1998;441:106–110. doi: 10.1016/S0014-5793(98)01514-2. [PubMed] [Cross Ref]
  • Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60:1815–1824. doi: 10.1002/art.24555. [PMC free article] [PubMed] [Cross Ref]
  • Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J. Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci USA. 2005;102:3372–3377. doi: 10.1073/pnas.0408506102. [PMC free article] [PubMed] [Cross Ref]
  • Mavragani CP, Niewold TB, Moutsopoulos NM, Pillemer SR, Wahl SM, Crow MK. Augmented interferon-alpha pathway activation in patients with Sjogren's syndrome treated with etanercept. Arthritis Rheum. 2007;56:3995–4004. doi: 10.1002/art.23062. [PMC free article] [PubMed] [Cross Ref]
  • Hengstman GJ, De Bleecker JL, Feist E, Vissing J, Denton CP, Manoussakis MN, Slott Jensen H, van Engelen BG, Hoogen FH van den. Open-label trial of anti-TNF-alpha in dermato- and polymyositis treated concomitantly with methotrexate. Eur Neurol. 2008;59:159–163. doi: 10.1159/000114036. [PubMed] [Cross Ref]
  • Dastmalchi M, Grundtman C, Alexanderson H, Mavragani CP, Einarsdottir H, Helmers SB, Elvin K, Crow MK, Nennesmo I, Lundberg IE. A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann Rheum Dis. 2008;67:1670–1677. doi: 10.1136/ard.2007.077974. [PubMed] [Cross Ref]
  • A study to evaluate safety of multi-dose MEDI-545 in adult patients with dermatomyositis or polymyositis. http://clinicaltrials.gov/ct2/show/NCT00533091

Articles from Arthritis Research & Therapy are provided here courtesy of BioMed Central
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...