• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 1987; 84(19): 6677–6681.
PMCID: PMC299146

Molecular cloning and amino acid sequence of leukotriene A4 hydrolase.


A cDNA clone corresponding to leukotriene A4 hydrolase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antiserum. Several additional clones from human lung and placenta cDNA lambda g11 libraries were obtained by plaque hybridization with the 32P-labeled lung cDNA clone. One of these clones has an insert of 1910 base pairs that contains the complete protein-coding region. From the deduced primary structure, leukotriene A4 hydrolase is a 610 amino and protein with a calculated molecular weight of 69,140. No apparent homologies with microsomal epoxide hydrolases were found. RNA blot analysis indicated substantial amounts of a discrete mRNA of approximately equal to 2250 nucleotides in lung tissue and leukocytes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. [PubMed]
  • Shimizu T, Rådmark O, Samuelsson B. Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci U S A. 1984 Feb;81(3):689–693. [PMC free article] [PubMed]
  • Rouzer CA, Matsumoto T, Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–861. [PMC free article] [PubMed]
  • Haeggström J, Meijer J, Rådmark O. Leukotriene A4. Enzymatic conversion into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid by mouse liver cytosolic epoxide hydrolase. J Biol Chem. 1986 May 15;261(14):6332–6337. [PubMed]
  • Rådmark O, Shimizu T, Jörnvall H, Samuelsson B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem. 1984 Oct 25;259(20):12339–12345. [PubMed]
  • Evans JF, Dupuis P, Ford-Hutchinson AW. Purification and characterisation of leukotriene A4 hydrolase from rat neutrophils. Biochim Biophys Acta. 1985 May 29;840(1):43–50. [PubMed]
  • McGee J, Fitzpatrick F. Enzymatic hydration of leukotriene A4. Purification and characterization of a novel epoxide hydrolase from human erythrocytes. J Biol Chem. 1985 Oct 15;260(23):12832–12837. [PubMed]
  • Fitzpatrick F, Haeggström J, Granström E, Samuelsson B. Metabolism of leukotriene A4 by an enzyme in blood plasma: a possible leukotactic mechanism. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5425–5429. [PMC free article] [PubMed]
  • Haeggström J, Rådmark O, Fitzpatrick FA. Leukotriene A4-hydrolase activity in guinea pig and human liver. Biochim Biophys Acta. 1985 Jul 9;835(2):378–384. [PubMed]
  • Wong PY, Chao PH, Spokas EG. Metabolism of leukotriene A4 in the rat kidney and isolated glomeruli. Adv Prostaglandin Thromboxane Leukot Res. 1985;15:423–426. [PubMed]
  • Medina JF, Haeggström J, Wetterholm A, Wallin A, Rådmark O. Enzymatic hydrolysis of leukotriene A4 into 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acid and LTB4 by mammalian kidney. Biochem Biophys Res Commun. 1987 Mar 13;143(2):697–703. [PubMed]
  • Izumi T, Shimizu T, Seyama Y, Ohishi N, Takaku F. Tissue distribution of leukotriene A4 hydrolase activity in guinea pig. Biochem Biophys Res Commun. 1986 Feb 26;135(1):139–145. [PubMed]
  • Hall R, Hyde JE, Goman M, Simmons DL, Hope IA, Mackay M, Scaife J, Merkli B, Richle R, Stocker J. Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature. 311(5984):379–382. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. [PubMed]
  • Persson H, Gray HE, Godeau F. Growth-dependent synthesis of c-myc-encoded proteins: early stimulation by serum factors in synchronized mouse 3T3 cells. Mol Cell Biol. 1985 Nov;5(11):2903–2912. [PMC free article] [PubMed]
  • Jeffery J, Cederlund E, Jörnvall H. Sorbitol dehydrogenase. The primary structure of the sheep-liver enzyme. Eur J Biochem. 1984 Apr 2;140(1):7–16. [PubMed]
  • Heinemann FS, Ozols J. The covalent structure of hepatic microsomal epoxide hydrolase. II. The complete amino acid sequence. J Biol Chem. 1984 Jan 25;259(2):797–804. [PubMed]
  • Porter TD, Beck TW, Kasper CB. Complementary DNA and amino acid sequence of rat liver microsomal, xenobiotic epoxide hydrolase. Arch Biochem Biophys. 1986 Jul;248(1):121–129. [PubMed]
  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. [PMC free article] [PubMed]
  • Evans JF, Nathaniel DJ, Zamboni RJ, Ford-Hutchinson AW. Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem. 1985 Sep 15;260(20):10966–10970. [PubMed]
  • Dente L, Cesareni G, Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983 Mar 25;11(6):1645–1655. [PMC free article] [PubMed]
  • Chou PY, Fasman GD. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. [PubMed]
  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. [PMC free article] [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • OMIM
    OMIM record citing PubMed
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...