• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 1987; 84(19): 6629–6633.
PMCID: PMC299136

Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5).

Abstract

The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in lambda phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (approximately 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1009K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Metcalf D, Begley CG, Johnson GR, Nicola NA, Vadas MA, Lopez AF, Williamson DJ, Wong GG, Clark SC, Wang EA. Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1986 Jan;67(1):37–45. [PubMed]
  • Tomonaga M, Golde DW, Gasson JC. Biosynthetic (recombinant) human granulocyte-macrophage colony-stimulating factor: effect on normal bone marrow and leukemia cell lines. Blood. 1986 Jan;67(1):31–36. [PubMed]
  • Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG, et al. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell. 1986 Oct 10;47(1):3–10. [PubMed]
  • Lopez AF, To LB, Yang YC, Gamble JR, Shannon MF, Burns GF, Dyson PG, Juttner CA, Clark S, Vadas MA. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci U S A. 1987 May;84(9):2761–2765. [PMC free article] [PubMed]
  • Nicola NA, Metcalf D, Johnson GR, Burgess AW. Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood. 1979 Sep;54(3):614–627. [PubMed]
  • Sanderson CJ, Warren DJ, Strath M. Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med. 1985 Jul 1;162(1):60–74. [PMC free article] [PubMed]
  • Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ. Murine eosinophil differentiation factor. An eosinophil-specific colony-stimulating factor with activity for human cells. J Exp Med. 1986 May 1;163(5):1085–1099. [PMC free article] [PubMed]
  • Sanderson CJ, O'Garra A, Warren DJ, Klaus GG. Eosinophil differentiation factor also has B-cell growth factor activity: proposed name interleukin 4. Proc Natl Acad Sci U S A. 1986 Jan;83(2):437–440. [PMC free article] [PubMed]
  • Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M, et al. Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature. 1986 Nov 6;324(6092):70–73. [PubMed]
  • Campbell HD, Ymer S, Fung MC, Young IG. Cloning and nucleotide sequence of the murine interleukin-3 gene. Eur J Biochem. 1985 Jul 15;150(2):297–304. [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Denhardt DT. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. [PubMed]
  • Frischauf AM, Lehrach H, Poustka A, Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. [PubMed]
  • Benton WD, Davis RW. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. [PubMed]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed]
  • Deininger PL. Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem. 1983 Feb 15;129(1):216–223. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Chen EY, Seeburg PH. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. [PubMed]
  • Staden R. A computer program to enter DNA gel reading data into a computer. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):499–503. [PMC free article] [PubMed]
  • Griffin JD, Sullivan R, Beveridge RP, Larcom P, Schlossman SF. Induction of proliferation of purified human myeloid progenitor cells: a rapid assay for granulocyte colony-stimulating factors. Blood. 1984 Apr;63(4):904–911. [PubMed]
  • Nicola NA, Begley CG, Metcalf D. Identification of the human analogue of a regulator that induces differentiation in murine leukaemic cells. Nature. 1985 Apr 18;314(6012):625–628. [PubMed]
  • Potter H, Weir L, Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. [PMC free article] [PubMed]
  • Miller J, Malek TR, Leonard WJ, Greene WC, Shevach EM, Germain RN. Nucleotide sequence and expression of a mouse interleukin 2 receptor cDNA. J Immunol. 1985 Jun;134(6):4212–4217. [PubMed]
  • Okayama H, Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. [PMC free article] [PubMed]
  • Azuma C, Tanabe T, Konishi M, Kinashi T, Noma T, Matsuda F, Yaoita Y, Takatsu K, Hammarström L, Smith CI, et al. Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with the murine homologue. Nucleic Acids Res. 1986 Nov 25;14(22):9149–9158. [PMC free article] [PubMed]
  • Matsuo T, Heller M, Petti L, O'Shiro E, Kieff E. Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science. 1984 Dec 14;226(4680):1322–1325. [PubMed]
  • Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. [PubMed]
  • von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. [PubMed]
  • Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982 May 11;10(9):2951–2961. [PMC free article] [PubMed]
  • Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. [PMC free article] [PubMed]
  • O'Garra A, Warren DJ, Holman M, Popham AM, Sanderson CJ, Klaus GG. Interleukin 4 (B-cell growth factor II/eosinophil differentiation factor) is a mitogen and differentiation factor for preactivated murine B lymphocytes. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5228–5232. [PMC free article] [PubMed]
  • Le Beau MM, Diaz MO, Karin M, Rowley JD. Metallothionein gene cluster is split by chromosome 16 rearrangements in myelomonocytic leukaemia. Nature. 1985 Feb 21;313(6004):709–711. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • OMIM
    OMIM
    OMIM record citing PubMed
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...