• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 1989; 86(19): 7418–7422.
PMCID: PMC298075

Artificial nucleosome positioning sequences.

Abstract

We have used the emerging rules for the sequence dependence of DNA bendability to design and test a series of DNA molecules that incorporate strongly into nucleosomes. Competitive reconstitution experiments showed the superiority in histone octamer binding of DNA molecules in which segments consisting exclusively of A and T or G and C, separated by 2 base pairs (bp), are repeated with a 10-bp period. These repeated (A/T)3NN(G/C)3NN motifs are superior in nucleosome formation to natural positioning sequences and to other repeated motifs such as AANNNTTNNN and GGNNNCCNNN. Studies of different lengths of repetitive anisotropically flexible DNA showed that a segment of approximately 40 bp embedded in a 160-bp fragment is sufficient to generate nucleosome binding equivalent to that of natural nucleosome positioning sequences from 5S RNA genes. Bending requirements along the surface of the nucleosome seem to be quite constant, with no large jumps in binding free energy attributable to protein-induced kinks. The most favorable sequences incorporate into nucleosomes more strongly by 100-fold than bulk nucleosomal DNA, but differential bending free energies are small when normalized to the number of bends: a free energy difference of only about 100 cal/mol per bend (1 cal = 4.184 J) distinguishes the best bending sequences and bulk DNA. We infer that the distortion energy of DNA bending in the nucleosome is only weakly dependent on DNA sequence.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brown DD. The role of stable complexes that repress and activate eucaryotic genes. Cell. 1984 Jun;37(2):359–365. [PubMed]
  • Palen TE, Cech TR. Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of Tetrahymena. Cell. 1984 Apr;36(4):933–942. [PubMed]
  • Almer A, Rudolph H, Hinnen A, Hörz W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 1986 Oct;5(10):2689–2696. [PMC free article] [PubMed]
  • Benezra R, Cantor CR, Axel R. Nucleosomes are phased along the mouse beta-major globin gene in erythroid and nonerythroid cells. Cell. 1986 Mar 14;44(5):697–704. [PubMed]
  • Richard-Foy H, Hager GL. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 1987 Aug;6(8):2321–2328. [PMC free article] [PubMed]
  • Kornberg R. The location of nucleosomes in chromatin: specific or statistical. Nature. 1981 Aug 13;292(5824):579–580. [PubMed]
  • Strauss F, Varshavsky A. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell. 1984 Jul;37(3):889–901. [PubMed]
  • Thoma F, Zatchej M. Chromatin folding modulates nucleosome positioning in yeast minichromosomes. Cell. 1988 Dec 23;55(6):945–953. [PubMed]
  • Trifonov EN, Sussman JL. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816–3820. [PMC free article] [PubMed]
  • Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. [PubMed]
  • Fedor MJ, Lue NF, Kornberg RD. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J Mol Biol. 1988 Nov 5;204(1):109–127. [PubMed]
  • Thoma F. Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J Mol Biol. 1986 Jul 20;190(2):177–190. [PubMed]
  • Satchwell SC, Drew HR, Travers AA. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659–675. [PubMed]
  • Gartenberg MR, Crothers DM. DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature. 1988 Jun 30;333(6176):824–829. [PubMed]
  • Simpson RT, Stafford DW. Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A. 1983 Jan;80(1):51–55. [PMC free article] [PubMed]
  • Ramsay N. Deletion analysis of a DNA sequence that positions itself precisely on the nucleosome core. J Mol Biol. 1986 May 5;189(1):179–188. [PubMed]
  • Rhodes D. Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J. 1985 Dec 16;4(13A):3473–3482. [PMC free article] [PubMed]
  • FitzGerald PC, Simpson RT. Effects of sequence alterations in a DNA segment containing the 5 S RNA gene from Lytechinus variegatus on positioning of a nucleosome core particle in vitro. J Biol Chem. 1985 Dec 5;260(28):15318–15324. [PubMed]
  • Uberbacher EC, Harp JM, Bunick GJ. DNA sequence patterns in precisely positioned nucleosomes. J Biomol Struct Dyn. 1988 Aug;6(1):105–120. [PubMed]
  • Hartley JL, Gregori TJ. Cloning multiple copies of a DNA segment. Gene. 1981 May;13(4):347–353. [PubMed]
  • Lutter LC. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. [PubMed]
  • Tullius TD, Dombroski BA. Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5469–5473. [PMC free article] [PubMed]
  • Hagerman PJ. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981 Jul;20(7):1503–1535. [PubMed]
  • Stacks PC, Schumaker VN. Nucleosome dissociation and transfer in concentrated salt solutions. Nucleic Acids Res. 1979 Dec 20;7(8):2457–2467. [PMC free article] [PubMed]
  • Simpson RT, Thoma F, Brubaker JM. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell. 1985 Oct;42(3):799–808. [PubMed]
  • Wolffe AP, Brown DD. Differential 5S RNA gene expression in vitro. Cell. 1987 Dec 4;51(5):733–740. [PubMed]
  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. [PubMed]
  • Hogan ME, Rooney TF, Austin RH. Evidence for kinks in DNA folding in the nucleosome. Nature. 1987 Aug 6;328(6130):554–557. [PubMed]
  • Hogan ME, Austin RH. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 1987 Sep 17;329(6136):263–266. [PubMed]
  • Otwinowski Z, Schevitz RW, Zhang RG, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. [PubMed]
  • Koudelka GB, Harbury P, Harrison SC, Ptashne M. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4633–4637. [PMC free article] [PubMed]
  • Thoma F, Simpson RT. Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature. 1985 May 16;315(6016):250–252. [PubMed]
  • Lorch Y, LaPointe JW, Kornberg RD. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell. 1987 Apr 24;49(2):203–210. [PubMed]
  • Losa R, Brown DD. A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it. Cell. 1987 Aug 28;50(5):801–808. [PubMed]
  • Lorch Y, LaPointe JW, Kornberg RD. On the displacement of histones from DNA by transcription. Cell. 1988 Dec 2;55(5):743–744. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...