• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jul 1989; 86(13): 4996–4999.
PMCID: PMC297543

Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium.

Abstract

The photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] small subunit protein is encoded by the gene rbcS in the chloroplast genome of the unicellular alga Olisthodiscus luteus. This observation contrasts sharply with that seen in terrestrial plants and green algae, where rbcS is nuclear-localized. In this study, the O. luteus rbcS gene has been sequenced. The predicted primary structure of the protein sequence is 139 amino acids in length and lacks an N-terminal signal sequence. Unexpectedly, the O. luteus rbcS amino acid sequence shows the greatest similarity (56% identity) to that of the chemolithotrophic bacterium Alcaligenes eutrophus. A comparison of the N-terminal amino acid rbcS sequence of A. eutrophus to those of O. luteus and brown alga Fucus species shows extensive sequence similarity (68.3% identity). This observation suggests that the rbcS genes of these organisms are evolutionary homologues and may provide useful information in the study of small-subunit function.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (726K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Miziorko HM, Lorimer GH. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. [PubMed]
  • Reith M, Cattolico RA. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton Q(B) protein: Phylogenetic implications. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8599–8603. [PMC free article] [PubMed]
  • Nierzwicki-Bauer SA, Curtis SE, Haselkorn R. Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5961–5965. [PMC free article] [PubMed]
  • Andersen K, Wilke-Douglas M. Genetic and physical mapping and expression in Pseudomonas aeruginosa of the chromosomally encoded ribulose bisphosphate carboxylase genes of Alcaligenes eutrophus. J Bacteriol. 1987 May;169(5):1997–2004. [PMC free article] [PubMed]
  • Newman SM, Cattolico RA. Structural, Functional, and Evolutionary Analysis of Ribulose-1,5-Bisphosphate Carboxylase from the Chromophytic Alga Olisthodiscus luteus. Plant Physiol. 1987 Jun;84(2):483–490. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Messing J, Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. [PubMed]
  • Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 1981 Jul 10;9(13):3015–3027. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Shinozaki K, Sugiura M. The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene. 1982 Nov;20(1):91–102. [PubMed]
  • Shinozaki K, Sugiura M. The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the gene for the large subunit in the cyanobacterium Anacystis nidulans 6301. Nucleic Acids Res. 1983 Oct 25;11(20):6957–6964. [PMC free article] [PubMed]
  • Curtis SE, Haselkorn R. Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1835–1839. [PMC free article] [PubMed]
  • Andersen K, Caton J. Sequence analysis of the Alcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products. J Bacteriol. 1987 Oct;169(10):4547–4558. [PMC free article] [PubMed]
  • Goldschmidt-Clermont M, Rahire M. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol. 1986 Oct 5;191(3):421–432. [PubMed]
  • Mazur BJ, Chui CF. Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylase-oxygenase from tobacco. Nucleic Acids Res. 1985 Apr 11;13(7):2373–2386. [PMC free article] [PubMed]
  • Matsuoka M, Kano-Murakami Y, Tanaka Y, Ozeki Y, Yamamoto N. Nucleotide sequence of cDNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase from maize. J Biochem. 1987 Oct;102(4):673–676. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Voordouw G, De Vries PA, Van den Berg WA, De Clerck EP. Site-directed mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Eur J Biochem. 1987 Mar 16;163(3):591–598. [PubMed]
  • Pichersky E, Bernatzky R, Tanksley SD, Cashmore AR. Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3880–3884. [PMC free article] [PubMed]
  • Ersland DR, Aldrich J, Cattolico RA. Kinetic Complexity, Homogeneity, and Copy Number of Chloroplast DNA from the Marine Alga Olisthodiscus luteus. Plant Physiol. 1981 Dec;68(6):1468–1473. [PMC free article] [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]
  • Bowien B, Mayer F, Codd GA, Schlegel HG. Purification, some properties and quaternary structure of the D-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch Microbiol. 1976 Nov 2;110(23):157–166. [PubMed]
  • Aldrich J, Cherney BW, Merlin E, Christopherson L. The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet. 1988 Aug;14(2):137–146. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...