Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1995 Feb; 95(2): 725–731.
PMCID: PMC295540

Bacterial lipopolysaccharide-mediated fetal death. Production of a newly recognized form of inducible cyclooxygenase (COX-2) in murine decidua in response to lipopolysaccharide.


Maternal infection is a cause of spontaneous abortion and preterm labor in humans, but the pathophysiology is unclear. We hypothesized that eicosanoids play an important role in infection-driven pregnancy loss. To investigate this hypothesis, we administered lipopolysaccharide (LPS) to pregnant C3H/HeN mice and found that LPS administration caused fetal death in a dose-dependent fashion. Pretreatment with indomethacin significantly decreased the proportion of fetal death from 83% to < 25% in mice injected with 10 micrograms of LPS. Also, decidual explants from LPS-treated mice produced significantly more inflammatory eicosanoids, including prostaglandins E2 and F2 alpha and thromboxane B2, than controls. We investigated the regulatory mechanisms responsible for increased decidual prostanoid production in response to LPS. Western and Northern blots demonstrated that decidual protein and mRNA levels of a recently recognized highly inducible form of cyclooxygenase, COX-2, were substantially increased in mice treated with LPS. Induction of COX-2 was rapid: mRNA was detected 30 min after LPS injection. In contrast, another form of cyclooxygenase, COX-1, was only minimally induced in response to LPS. Our data indicate that LPS induces decidual prostanoid production via increased COX-2 expression. Since LPS-mediated fetal death is markedly diminished by pretreatment with indomethacin, COX-2-mediated eicosanoid production is likely a key pathophysiologic event in LPS-mediated fetal death.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.5M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988 Oct 13;319(15):972–978. [PubMed]
  • Gibbs RS, Duff P. Progress in pathogenesis and management of clinical intraamniotic infection. Am J Obstet Gynecol. 1991 May;164(5 Pt 1):1317–1326. [PubMed]
  • McDuffie RS, Jr, Sherman MP, Gibbs RS. Amniotic fluid tumor necrosis factor-alpha and interleukin-1 in a rabbit model of bacterially induced preterm pregnancy loss. Am J Obstet Gynecol. 1992 Dec;167(6):1583–1588. [PubMed]
  • Romero R, Roslansky P, Oyarzun E, Wan M, Emamian M, Novitsky TJ, Gould MJ, Hobbins JC. Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. Am J Obstet Gynecol. 1988 May;158(5):1044–1049. [PubMed]
  • Cox SM, MacDonald PC, Casey ML. Assay of bacterial endotoxin (lipopolysaccharide) in human amniotic fluid: potential usefulness in diagnosis and management of preterm labor. Am J Obstet Gynecol. 1988 Jul;159(1):99–106. [PubMed]
  • Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE. The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxim. J Infect Dis. 1980 Jan;141(1):55–63. [PubMed]
  • Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988 Jun 9;318(23):1481–1486. [PubMed]
  • Spinas GA, Bloesch D, Keller U, Zimmerli W, Cammisuli S. Pretreatment with ibuprofen augments circulating tumor necrosis factor-alpha, interleukin-6, and elastase during acute endotoxinemia. J Infect Dis. 1991 Jan;163(1):89–95. [PubMed]
  • DeWitt DL. Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta. 1991 May 8;1083(2):121–134. [PubMed]
  • DeWitt DL, Smith WL. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1412–1416. [PMC free article] [PubMed]
  • Merlie JP, Fagan D, Mudd J, Needleman P. Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase). J Biol Chem. 1988 Mar 15;263(8):3550–3553. [PubMed]
  • Simmons DL, Levy DB, Yannoni Y, Erikson RL. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1178–1182. [PMC free article] [PubMed]
  • Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991 Jul 15;266(20):12866–12872. [PubMed]
  • O'Banion MK, Sadowski HB, Winn V, Young DA. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem. 1991 Dec 5;266(34):23261–23267. [PubMed]
  • Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2692–2696. [PMC free article] [PubMed]
  • Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS10-encoded protein is a functional prostaglandin G/H synthase. J Biol Chem. 1992 Mar 5;267(7):4338–4344. [PubMed]
  • Oshima T, Yoshimoto T, Yamamoto S, Kumegawa M, Yokoyama C, Tanabe T. cAMP-dependent induction of fatty acid cyclooxygenase mRNA in mouse osteoblastic cells (MC3T3-E1). J Biol Chem. 1991 Jul 25;266(21):13621–13626. [PubMed]
  • Lin AH, Bienkowski MJ, Gorman RR. Regulation of prostaglandin H synthase mRNA levels and prostaglandin biosynthesis by platelet-derived growth factor. J Biol Chem. 1989 Oct 15;264(29):17379–17383. [PubMed]
  • Wong WY, DeWitt DL, Smith WL, Richards JS. Rapid induction of prostaglandin endoperoxide synthase in rat preovulatory follicles by luteinizing hormone and cAMP is blocked by inhibitors of transcription and translation. Mol Endocrinol. 1989 Nov;3(11):1714–1723. [PubMed]
  • Sano H, Hla T, Maier JA, Crofford LJ, Case JP, Maciag T, Wilder RL. In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest. 1992 Jan;89(1):97–108. [PMC free article] [PubMed]
  • Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992 Dec 25;267(36):25934–25938. [PubMed]
  • O'Sullivan MG, Chilton FH, Huggins EM, Jr, McCall CE. Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J Biol Chem. 1992 Jul 25;267(21):14547–14550. [PubMed]
  • Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. [PubMed]
  • Suzuki H, Kuriyama H. Effects of prostaglandin E2 on the electrical property of the pregnant mouse myometrium. Jpn J Physiol. 1975;25(2):201–215. [PubMed]
  • Brenner WE. The current status of prostaglandins as abortifacients. Am J Obstet Gynecol. 1975 Oct 1;123(3):306–328. [PubMed]
  • Dudley DJ, Chen CL, Branch DW, Hammond E, Mitchell MD. A murine model of preterm labor: inflammatory mediators regulate the production of prostaglandin E2 and interleukin-6 by murine decidua. Biol Reprod. 1993 Jan;48(1):33–39. [PubMed]
  • Magness RR, Mitchell MD, Rosenfeld CR. Uteroplacental production of eicosanoids in ovine pregnancy. Prostaglandins. 1990 Jan;39(1):75–88. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Harpold MM, Evans RM, Salditt-Georgieff M, Darnell JE. Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell. 1979 Aug;17(4):1025–1035. [PubMed]
  • Abramson SB, Weissmann G. The mechanisms of action of nonsteroidal antiinflammatory drugs. Arthritis Rheum. 1989 Jan;32(1):1–9. [PubMed]
  • Skarnes RC, Harper MJ. Relationship between endotoxin-induced abortion and the synthesis of prostaglandin F. Prostaglandins. 1972 Mar;1(3):191–203. [PubMed]
  • Cybulsky MI, Chan MK, Movat HZ. Acute inflammation and microthrombosis induced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in gram-negative infection. Lab Invest. 1988 Apr;58(4):365–378. [PubMed]
  • Silver RM, Lohner WS, Daynes RA, Mitchell MD, Branch DW. Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor alpha. Biol Reprod. 1994 May;50(5):1108–1112. [PubMed]
  • Silen ML, Firpo A, Morgello S, Lowry SF, Francus T. Interleukin-1 alpha and tumor necrosis factor alpha cause placental injury in the rat. Am J Pathol. 1989 Aug;135(2):239–244. [PMC free article] [PubMed]
  • Lynn WA, Golenbock DT. Lipopolysaccharide antagonists. Immunol Today. 1992 Jul;13(7):271–276. [PubMed]
  • Mitchell MD, Edwin SS, Lundin-Schiller S, Silver RM, Smotkin D, Trautman MS. Mechanism of interleukin-1 beta stimulation of human amnion prostaglandin biosynthesis: mediation via a novel inducible cyclooxygenase. Placenta. 1993 Nov-Dec;14(6):615–625. [PubMed]
  • Kearns M, Lala PK. Characterization of hematogenous cellular constituents of the murine decidua: a surface marker study. J Reprod Immunol. 1985 Nov;8(2-3):213–234. [PubMed]
  • Masferrer JL, Seibert K, Zweifel B, Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3917–3921. [PMC free article] [PubMed]
  • Smith SK, Kelly RW. The effect of estradiol-17 beta and actinomycin D on the release of PGF and PGE from separated cells of human endometrium. Prostaglandins. 1987 Oct;34(4):553–561. [PubMed]
  • Norwitz ER, Starkey PM, López Bernal A, Turnbull AC. Identification by flow cytometry of the prostaglandin-producing cell populations of term human decidua. J Endocrinol. 1991 Nov;131(2):327–334. [PubMed]
  • Romero R, Emamian M, Wan M, Quintero R, Hobbins JC, Mitchell MD. Prostaglandin concentrations in amniotic fluid of women with intra-amniotic infection and preterm labor. Am J Obstet Gynecol. 1987 Dec;157(6):1461–1467. [PubMed]
  • López Bernal A, Hansell DJ, Khong TY, Keeling JW, Turnbull AC. Prostaglandin E production by the fetal membranes in unexplained preterm labour and preterm labour associated with chorioamnionitis. Br J Obstet Gynaecol. 1989 Oct;96(10):1133–1139. [PubMed]
  • Kurki T, Eronen M, Lumme R, Ylikorkala O. A randomized double-dummy comparison between indomethacin and nylidrin in threatened preterm labor. Obstet Gynecol. 1991 Dec;78(6):1093–1097. [PubMed]
  • Besinger RE, Niebyl JR, Keyes WG, Johnson TR. Randomized comparative trial of indomethacin and ritodrine for the long-term treatment of preterm labor. Am J Obstet Gynecol. 1991 Apr;164(4):981–988. [PubMed]
  • Moise KJ, Jr, Huhta JC, Sharif DS, Ou CN, Kirshon B, Wasserstrum N, Cano L. Indomethacin in the treatment of premature labor. Effects on the fetal ductus arteriosus. N Engl J Med. 1988 Aug 11;319(6):327–331. [PubMed]
  • Norton ME, Merrill J, Cooper BA, Kuller JA, Clyman RI. Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med. 1993 Nov 25;329(22):1602–1607. [PubMed]
  • Vane J. Towards a better aspirin. Nature. 1994 Jan 20;367(6460):215–216. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • HomoloGene
    HomoloGene clusters of homologous genes and sequences that cite the current articles. These are references on the Gene and sequence records in the HomoloGene entry.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...