Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1994 Apr; 93(4): 1722–1732.
PMCID: PMC294227

Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay.


A new immunoassay was developed to detect denaturation of type II collagen in osteoarthritis (OA). A peptide, alpha 1 (II)-CB11B, located in the CB11 peptide of type II collagen, was synthesized and used to produce a monoclonal antibody (COL2-3/4m) of the IgG1 (kappa) isotype. This reacts with a defined epitope in denatured but not native type II collagen and the alpha 3 chain of type XI collagen. The latter is present in very small amounts (about 1% wt/wt) in cartilage relative to the alpha 1 (II) chain. By using an enzyme-linked immunosorbent assay, type II collagen denaturation and total type II collagen content were determined. The epitope recognized by the antibody was resistant to cleavage by alpha-chymotrypsin and proteinase K which were used to extract alpha 1 (II)-CB11B from the denatured (alpha-chymotrypsin soluble) and residual native (proteinase K soluble) collagen alpha-chains, respectively, present in human femoral articular cartilage. Type II collagen content was significantly reduced from a mean (range) of 14% (9.2-20.8%) of wet weight in 8 normal cartilages to 10.3% (7.4-15.0%) in 16 OA cartilages. This decrease, which may result in part from an increased hydration, was accompanied by an increase in the percent denaturation of type II collagen in OA to 6.0% of total type II collagen compared with 1.1% in normal tissue. The percent denaturation was ordinarily greater in the more superficial zone than in the deep zone of OA cartilage.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Schmidt MB, Mow VC, Chun LE, Eyre DR. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res. 1990 May;8(3):353–363. [PubMed]
  • Rizkalla G, Reiner A, Bogoch E, Poole AR. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest. 1992 Dec;90(6):2268–2277. [PMC free article] [PubMed]
  • Harris ED, Jr, DiBona DR, Krane SM. A mechanism for cartilage destruction in rheumatoid arthritis. Trans Assoc Am Physicians. 1970;83:267–276. [PubMed]
  • Kobayashi I, Ziff M. Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum. 1975 Sep-Oct;18(5):475–483. [PubMed]
  • Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977 Apr;36(2):121–129. [PMC free article] [PubMed]
  • Dodge GR, Poole AR. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. [PMC free article] [PubMed]
  • Dodge GR, Pidoux I, Poole AR. The degradation of type II collagen in rheumatoid arthritis: an immunoelectron microscopic study. Matrix. 1991 Nov;11(5):330–338. [PubMed]
  • Mort JS, Dodge GR, Roughley PJ, Liu J, Finch SJ, DiPasquale G, Poole AR. Direct evidence for active metalloproteinases mediating matrix degradation in interleukin 1-stimulated human articular cartilage. Matrix. 1993 Mar;13(2):95–102. [PubMed]
  • Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971 Apr;53(3):523–537. [PubMed]
  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. [PMC free article] [PubMed]
  • Hughes CE, Caterson B, White RJ, Roughley PJ, Mort JS. Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. Application to studies of human link protein cleavage by stromelysin. J Biol Chem. 1992 Aug 15;267(23):16011–16014. [PubMed]
  • Köhler G, Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. [PubMed]
  • Rosenberg LC, Choi HU, Tang LH, Johnson TL, Pal S, Webber C, Reiner A, Poole AR. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem. 1985 May 25;260(10):6304–6313. [PubMed]
  • Epstein EH., Jr (Alpha1(3))3 human skin collagen. Release by pepsin digestion and preponderance in fetal life. J Biol Chem. 1974 May 25;249(10):3225–3231. [PubMed]
  • Burleigh MC, Barrett AJ, Lazarus GS. Cathepsin B1. A lysosomal enzyme that degrades native collagen. Biochem J. 1974 Feb;137(2):387–398. [PMC free article] [PubMed]
  • Nimni ME. Collagen: structure, function, and metabolism in normal and fibrotic tissues. Semin Arthritis Rheum. 1983 Aug;13(1):1–86. [PubMed]
  • Matsui Y, Alini M, Webber C, Poole AR. Characterization of aggregating proteoglycans from the proliferative, maturing, hypertrophic, and calcifying zones of the cartilaginous physis. J Bone Joint Surg Am. 1991 Aug;73(7):1064–1074. [PubMed]
  • Morris NP, Bächinger HP. Type XI collagen is a heterotrimer with the composition (1 alpha, 2 alpha, 3 alpha) retaining non-triple-helical domains. J Biol Chem. 1987 Aug 15;262(23):11345–11350. [PubMed]
  • Kempson GE, Muir H, Pollard C, Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. [PubMed]
  • Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4(4):379–392. [PubMed]
  • Kempson GE. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta. 1991 Oct 31;1075(3):223–230. [PubMed]
  • Mohtai M, Smith RL, Schurman DJ, Tsuji Y, Torti FM, Hutchinson NI, Stetler-Stevenson WG, Goldberg GI. Expression of 92-kD type IV collagenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin 1. J Clin Invest. 1993 Jul;92(1):179–185. [PMC free article] [PubMed]
  • Eyre DR, Wu JJ, Apone S. A growing family of collagens in articular cartilage: identification of 5 genetically distinct types. J Rheumatol. 1987 May;14(Spec No):25–27. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...