• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of eurspinejspringer.comThis journalThis journalToc AlertsSubmit OnlineOpen Choice
Eur Spine J. Apr 2010; 19(4): 624–632.
Published online Sep 22, 2009. doi:  10.1007/s00586-009-1168-5
PMCID: PMC2899830

The association between isoinertial trunk muscle performance and low back pain in male adolescents

Abstract

The literature reports inconsistent findings regarding the association between low back pain (LBP) and trunk muscle function, in both adults and children. The strength of the relationship appears to be influenced by how LBP is qualified and the means by which muscle function is measured. The aim of this study was to examine the association between isoinertial trunk muscle performance and consequential (non-trivial) low back pain (LBP) in male adolescents. Healthy male adolescents underwent anthropometric measurements, clinical evaluation, and tests of trunk range of motion (ROM), maximum isometric strength (STRENGTH) and peak movement velocity (VEL), using an isoinertial device. They provided information about their regular sporting activities, history and family history of LBP. Predictors of “relevant/consequential LBP” were examined using multivariable logistic regression. LBP status was reassessed after 2 years and the change from baseline was categorised. At baseline, 33/95 (35%) subjects reported having experienced consequential LBP. BMI, a family history of LBP, and regularly playing sport were each significantly associated with a history of consequential LBP (p < 0.05). 85/95 (89%) boys participated in the follow-up: 51 (60%) reported no LBP at either baseline or follow-up (never LBP); 5 (6%) no LBP at baseline, but LBP at follow-up (new LBP); 19 (22%) LBP at baseline, but none at follow-up; and 10 (12%) LBP at both time-points (recurrent/persistent LBP). The only distinguishing features of group membership in these small groups were: fewer sport-active in the “never LBP” group); worse trunk mobility, in the “persistent LBP” group, lower baseline sagittal ROM in the “never LBP” and “new LBP” (p < 0.05). Regular involvement in sport was a consistent predictor of LBP. Isoinertial trunk performance was not associated with LBP in adolescents.

Keywords: Muscle strength, Range of motion, Sports, Adolescents, Low back pain

Introduction

Low back pain (LBP) often presents during the teenage years [1]. Some cross-sectional studies have reported an association between LBP and decreased trunk muscle strength [24], and endurance of the trunk extensors [4, 5], and flexors [6, 7]. However, others have not found any significant correlations between trunk muscle function and LBP [8, 9]. Indeed, a recent review of the literature, focusing on modifiable risk factors for LBP in adolescents, concluded that there is no evidence that muscle strengthening has a preventive effect on LBP in schoolchildren [10].

Part of the confusion might be accounted for by the specific methodology used to assess function and the lack of control of possible confounders. Where functional tests are used that are heavily influenced by extraneous factors, e.g., by motivation or pain-tolerance for muscular endurance [11] or by anthropometric factors [12, 13] for field strength tests that use body weight as the resistance (e.g. sit-ups, push-ups, curl-ups, etc.)—it is possible that the confounding factors are, themselves, stronger determinants of LBP than the physiological characteristic that they purport to measure. The situation is not helped by the fact that, in some studies, the terms “muscle strength” and “muscle endurance” are used interchangeably [4], despite the fact that these are two quite distinct attributes, governed by different structural and metabolic characteristics of the muscle [14, 15]. Further, the velocity of movement, or power output (the product of torque and velocity), during maximal exertions has rarely been considered in predictor studies, despite the fact that the speed of movement has been shown to be one of the performance characteristics that best distinguishes between individuals with LBP and controls [16]. Finally, the interrelationships between participation in sport and LBP per se, and sport and physical capacity, may obscure relationships between physical capacity and LBP when sport is not included as a possible confounder using multivariable analysis. Conceivably, also, the means by which LBP itself is characterized may play a role in determining the factors associated with its presence. The discrepancies in terminology in existing epidemiological studies of LBP—and their consequences [17]—have only recently been appreciated and addressed [18, 19] showing that the risk factors for the commonly used criterion “any LBP” (without further qualification) are very different and much more “psychology-based” than are those for incidents that lead to medical attention or work-loss. Indeed, the latter authors suggested that in risk factor studies the focus rather be placed on “significant” or “consequential” LBP.

The objective of this study was to examine whether trunk performance capacity—measured as range of motion, isometric strength and maximal trunk velocity—has any association with “consequential” LBP in adolescent boys. The influence of participation in sport was taken into consideration as a possible confounder.

Methods

Subject population

With the approval of the school authorities (Fribourg, Switzerland), healthy male adolescents aged 13–14 years were invited by the school physical education teachers or coaches of their extramural sports clubs to participate in the study. Recruitment was restricted to males to obtain a more homogeneous cohort and avoid possible confounders. Owing to the voluntary nature of participation, it was not possible to obtain a truly random sample from the school or sports clubs. Instead, it was hoped that the recruitment of individuals with a range of sporting interests would allow the main questions to be answered regarding any associations between muscle performance and LBP, when controlling for sports participation.

Subject medical evaluation

All potential subjects and their parents received a letter informing them of the study purpose and schedule. Willing participants contacted the study secretary and booked an appointment for their first evaluation.

The evaluation consisted of:

  1. A brief semi-structured interview that included sports-related questions:
    1. Regular sport activity in the past (if any, type/duration)?
    2. Current regular physical activity outside of the school system (Y/N)? If Y,
      1. Type of sport?
      2. Hours/week?
      3. Since when?
  2. Four questions about LBP:
    1. Ever had LBP to an extent that required medical care*, radiographs, or treatment (Y/N)? (*in the interview, it was made clear that doctors, physiotherapists, chiropractors, etc. all counted as medical care)
    2. Ever had LBP to an extent that interfered with leisure activities, sports training or school activities (Y/N)?
    3. Last episode of relevant/consequential LBP (up to 1 week ago, 1–4 weeks ago, 1–3 months ago or 3–12 months ago)?
    4. Parents/siblings ever been treated for LBP (Y/N)?

During the evaluation, participants were shown a drawing of the human body with the lumbar region (between the costal margin and the gluteal folds) shaded. LBP was later quantified in relation to those reporting a positive answer to either 2a or 2b (medical treatment or interference with everyday activities).

A physical examination was then performed to record height and weight and to carry out various clinical assessments; for these tests, the subjects were dressed in their underclothes. Lumbar mobility was measured using the modified Schober test [20]. Trunk flexion was assessed by measurement of the fingertip to floor distance. The examination also included assessment of hypermobility (using Beighton criteria; 4 or more was categorised as hypermobile) [21]. All test results were recorded on standardized forms.

Trunk muscle performance

Trunk muscle performance was evaluated using a triaxial trunk dynamometer (Isostation B-200, Isotechnologies, Inc., Hillsborough, NC). The Isostation B200 is an isoinertial (constant resistance) dynamometer under the control of a personal computer. Transducers measure angular velocity (degrees/s), torque (Nm) and angular position (degrees, °) in each measurement axis (flexion–extension, lateral flexion and rotation) at a data sampling rate of 50 Hz (8-bit data acquisition system). Additional details of the testing apparatus can be found elsewhere [22].

Subjects were advised to wear comfortable, loose-fitting clothing on the day of testing. The trunk muscle performance tests were administered by an Isotechnologies’ certified physiotherapist, according to the manufacturer’s instructions. Standard dynamometer testing protocols were used [23]. Each subject was positioned in standing and restrained in the B200 trunk dynamometer according to the protocol outlined in the Isotechnologies B200 user’s manual. In addition to a chest pad, thoracic strap, and thigh straps, the B200 restraint system securely restrains the pelvis (both translation and rotation) and isolates subsequent trunk rotation to the thoraco-lumbar spine.

Subjects first performed an unresisted range of motion (ROM) test in each of the three anatomic axes. They then carried out maximum isometric strength tests in: (1) flexion (F), (2) extension (E), (3) right lateral flexion (RLF), (4) left lateral flexion (LLF), (5) right rotation (RR), and (6) left rotation (LR). During the isometric tests, subjects were instructed to push against the machine and gradually build up to their maximum effort during the first 3 s of each 5-s trial, and then maintain this effort throughout the last 2 s of each trial.

For isoinertial (dynamic) testing, the machine’s resistance was set to 50% of the subject’s maximum F/E, R and LF isometric strength, and five repetitions of F/E, RR/LR, and RLF/LLF were performed. During the isoinertial tests, subjects were asked to move as quickly as possible over their maximum ROM. The testing protocol was in agreement with published recommendations that have previously shown the tests to be reliable [24].

Follow-up

Two years after the original assessment, the whole assessment battery was repeated again. Only the data relating to the questionnaire assessment of LBP over the intervening 2 years are presented here.

Data and statistical analysis

The data from each of the B200 muscle performance trials were processed using custom software written to read the B200 binary data files. In each case, the range of motion (ROM), maximum isometric torque (STRENGTH) and peak velocity (VEL) were determined for each direction of movement, in each movement plane. Values for the five repeated trials were averaged. For the purposes of data reduction, average values are given for parameters where symmetrical muscles on different body sides were tested (i.e., in lateral bending and rotation); however, since the generation of force in the sagittal plane requires different muscle groups for flexion than for extension, these were reported separately.

Descriptive data for continuous variables (if approximately normally distributed, as assessed with normal probability plots) are reported as means ± standard deviations. For continuous data, unpaired t-tests (two groups) or one-way analyses of variance (more than two groups) were used to examine differences in mean values between independent samples (e.g., LBP-status sub-groups); for non-normally distributed variables, Mann–Whitney tests (two groups) or Kruskal–Wallis tests (more than two groups) were used. Associations between categorical data were examined using contingency analysis and Chi-squared tests. Multivariable logistic regression analysis was used, using the forward selection procedure, to identify independent predictors accounting for group membership with regards to LBP status at baseline (binomial logistic regression). Results are presented in adjusted odds ratio (OR) with 95% confidence interval (95% CI).

Statistical significance was accepted at p < 0.05. No corrections were made for multiple testing, as previously recommended [25].

The study aimed to recruit a total of approximately 100 subjects, replicating the design of the published series of Sjolie et al. studies [4, 26, 27].

Assuming a prevalence of LBP between 30 and 40% this would have allowed the identification of odds ratios between 1.99 and 2.07 corresponding to a change in incidence between 16 and 18%, assuming a type I error probability of 5% and a type II error probability of 15% (i.e. power of 85%).

Results

Study group

A total of 95 subjects were recruited. Their mean age, height, body mass and body mass index were 14.0 (SD 1.7) years, 1.71 (0.10) m, 58.5 (SD 11.9) kg, and 20.0 (SD 3.0) kg m−2, respectively.

Twenty-two (23.2%) adolescents were considered “sedentary”, i.e. they attended physical education lessons at school, but engaged in no physical activity outside of the school system. 73 (76.8%) of the group played sport regularly [14 swimming, 29 basketball, 28 football, and 2 others (cycling, athletics)], and were members of an extramural team or club with an official license to participate at competitive events. On average, these children spent 4.5 (SD 1.9) h/week pursuing their sports endeavours, and had been doing so for 4.9 (SD 2.8) years.

Ten subjects did not take part in the follow-up assessment after 2 years (nine refused, and one had moved to a foreign country). This resulted in a follow-up rate of 89.5% (85/95) for the prospective assessment of LBP status.

LBP status at baseline and follow-up

At baseline, LBP requiring medical attention was reported by 14/95 subjects (14.7%); LBP interfering with activities, by 28/95 (29.5%); and LBP with either or both of these consequences (i.e., relevant/consequential LBP), by 33/95 (34.7%). Of the latter group, 15.6% reported having had the last episode up within the preceding week, 31.3% 1–4 weeks ago, 25.0% 1–3 months ago, and 28.1% 3–12 months ago. A positive family history of LBP requiring treatment was reported by 42/95 (44%) subjects.

Two years after the initial assessment, 15/85 (17.6%) of the subjects reported having had consequential LBP in the intervening period 10/15 (66.7%) of these had already reported such LBP at the baseline assessment, and the remainder reported it for the first time. There was a significant association between LBP-status at baseline and follow-up (Chi-squared, p = 0.003).

Overall, 51 (60%) reported no LBP at either baseline or follow-up (LBP status, never LBP); 5 (6%) reported no LBP at baseline but LBP at follow-up (new LBP); 19 (22%) had LBP at baseline but none at follow-up (LBP remission); and 10 (12%) had LBP at both time-points (recurrent/persistent LBP).

Personal characteristics in relation to LBP status at baseline: bivariate analyses

The baseline physical, clinical, and performance characteristics of the participants, split by their LBP-status at baseline (presence/absence of consequential LBP), are summarized in Table 1.

Table 1
Comparison of physical characteristics, sporting habits, clinical variables, and trunk muscle performance in subjects with and without a history of consequential LBP. Values are means (SD) unless otherwise stated

Sedentary subjects reported a lower prevalence of LBP than subjects who were regularly involved in sport. Almost all the subjects (31/33; 94%) who reported LBP were involved in regular sport; in contrast, only 42/62 (68%) with no history of LBP played regular sport (p = 0.004; Table 1). The average number of years playing sport was also significantly higher in the LBP group.

Those subjects with a history of LBP had a slightly, but significantly higher BMI (p = 0.02) than their LBP-free counterparts; a considerably higher proportion of them (64%) had an immediate family member who had undergone treatment for LBP, compared with those who had no LBP history (34%) (p = 0.005).

Few performance factors were associated with LBP: the unrestricted range of motion in the sagittal plane (i.e., flexion and extension) was significantly higher in those with a history of LBP than those with no such history (p = 0.03), as was maximum isometric rotation torque (p = 0.04) and peak angular velocity in extension (p = 0.05).

Personal characteristics in relation to LBP status at baseline: multivariable analyses

In multivariable logistic regression analyses, only three variables made a unique contribution to explaining the variance in consequential LBP (Table 2) (i.e., contributed to the model when all other variables were considered too). Independent predictors of the occurrence of LBP were the regular playing of sport, family history of LBP, and higher BMI.

Table 2
Independent predictors of consequential LBP at baseline (=1) versus no LBP at baseline (=0)

Personal characteristics in relation to the course of change in LBP status over 2-year follow-up

Although the low incidence of new LBP and small group sizes limited the potential for analysis, in univariate analyses a few factors were nonetheless associated with the change in LBP-status over the 2-year period (« never LBP », « new LBP », « recurrent/persistent LBP », « LBP remission ») (p = 0.05–0.10):

  • Participation in sport: lower participation rate in the “never LBP” group (69%) than the other groups (91%).
  • Family history of LBP: lower proportion in the “never LBP” (31%) and “new LBP” (40%) than the others (66%).
  • Fingertip to floor distance: greater distance, i.e. worse trunk mobility, in the “persistent LBP” group (18.2 cm) than the other groups (8.9 cm).
  • Baseline sagittal ROM: lower for “never LBP” (93.7°) and “new LBP” (92.3°) than the others (97.9°).

Discussion

The present study sought to examine whether, controlling for sporting habits, isoinertial trunk muscle performance differed in teenagers with a history of non-trivial LBP compared with their LBP-free counterparts. We also examined whether there was any association between performance and the change in LBP-status over a 2-year period. Quantitative assessment of trunk muscle performance has long been proposed to be clinically relevant for the prevention and diagnosis of spinal disorders [28, 29], and patients with chronic LBP and certain spinal disorders have been shown to display abnormal trunk muscle function [3032]. Dynamic trunk muscle performance testing has been used to identify specific patterns of motion associated with spinal pathologies [33] Isoinertial trunk dynamometry testing has been used to evaluate adults with LBP and to compare different groups of athletes [3436], but it has not previously been used in an adolescent population to establish the relationship between muscle performance and consequential LBP. Isoinertial dynamometric measures may offer a more standardised and controlled assessment of dynamic strength or power than do “field tests” of strength, in which the actual load being resisted is difficult to ascertain.

A number of studies have shown that the velocity of trunk movement might be important in relation to LBP [37, 38]. In an adult population, Marras et al. showed that the velocity of movement during various trunk functional tests was one of the few parameters that was capable of distinguishing between groups of individuals with LBP and controls [16]. Further, Merati et al. indicated that the velocity of test movement may be important in identifying trunk strength differences between children with and without back pain [39]. However, in the present study, no associations between reduced isoinertial performance (either strength or velocity) and LBP could be identified; on the contrary, in bivariate analyse, those with LBP tended to show higher values for these aspects of muscular performance. Our interpretation of this is that the relationship between these performance parameters and LBP is indirect, exerted via the relationship between regular participation in sport per se and LBP (with the latter occurring more frequently in relation to, for example, the muscle strains, and joint strains, etc. common in sport). In other words, we hypothesise that ROM and some torque/velocity measures were higher in the LBP group, because more athletes than non-athletes had LBP, and athletes tend to have higher performance capacity than non-athletes. Indeed, when controlling for participation in sports, in the multivariable analysis, the importance of most of the muscle performance variables was drastically diminished. We consider it important to consider such potentially confounding factors in studies of the association between muscular performance and LBP in order to avoid erroneous conclusions from being reached.

In examining the literature, the relationship between LBP and physical activities seems to be controversial. Some studies report an increased risk of LBP among sports-players whilst others find a protective effect of physical activity. Recently Wedderkopp et al. showed that a high level of physical activity in childhood seems to protect against LBP and mid-back pain in early adolescence [40], although, specific sports activities were not taken into account. In a large study including almost 7,000 Finnish teenagers, it was shown that boys participating in volleyball, gymnastics, gym-training, downhill skiing or snowboarding had a higher prevalence of LBP, whereas those involved in cross-country skiing reported less LBP [41]. Finally, Skoffer et al. found that a sedentary lifestyle or being engaged in some specific sports (most notably jogging, handball and gymnastics) were associated with an increased risk of function-limiting LBP [42].

In analyzing a large Finnish national cohort (n: 5,999; age 15–16 years), Auvinen et al. [43] found a significantly increased prevalence of consultation for LBP in the 6 months preceding the survey among adolescents reporting >6 h/week of brisk physical activity compared with those active for just 2–3 h/week. The authors recommended prospective evaluations of the relationship between activity or inactivity and LBP to be able to define the optimum activity level for adolescents.

Other predictors of LBP

Our results showed that BMI was significantly higher in adolescents with LBP than in those who were pain free. The difference was particularly striking when the analysis was limited to those involved in sports activities (data not shown). BMI does not provide any information about the body composition and might thus be influenced by muscle mass as well as by fat tissue; involvement in sports might therefore be considered a confounder, as more active adolescents may be expected to be more muscular. Nonetheless, BMI remained a significant predictor in the multivariable analysis, even when involvement in sports had already been controlled for. Hence, the finding may be more than incidental.

The literature shows discordant findings about the possible relationship between BMI and LBP. In an entire cross-sectional cohort of Swedish military recruits (>48,000 people) stratified into underweight (BMI < 18.499), normal weight (BMI = 18.5–24.999), overweight (BMI = 25.0–29.999), and obese (BMI > 30.0), only being underweight was significantly associated with having back problems (adjusted OR = 1.2) [44]. However, in another paper [45, 46], in which a slightly different classification for BMI was used, a moderately increased prevalence (OR = 1.3) of some LBP during the preceding year was shown in overweight (BMI 25–29) subjects compared with underweight (BMI < 20) and heavily overweight (BMI > 29) individuals.

Specifically in relation to adolescents, Sjolie found a significant positive (association between BMI and LBP) [27], whilst Bernard et al. showed no difference in BMI between subjects with chronic LBP and controls [47].

Our findings on the association between family history of LBP and adolescent LBP confirm those of a previous survey in the same area of Switzerland [48] and those of other studies [4951]; however, there are also studies that report no familial clustering [52]. Whether the association, when observed, is a question of “nature or nurture” remains open to speculation. There is increasing evidence of a hereditary aspect to low back pain [53, 54] although exposure to the nature of the problem (and its need for treatment or not) by virtue of upbringing might also play a role. It has been shown that parents who sought more treatment for their own pain were more likely to have children reporting higher levels of pain [51]. As our question specifically mentioned “having been treated for LBP” this might have influenced our findings.

Prevalence and recurrence rates

Recent studies in children and adolescents have reported high figures for the prevalence of back pain. In a study of 144 pre-pubertal subjects (77 boys) (11.9 ± 0.3 years) where the enquiry about back pain was limited to the previous 6 months, but not restricted to the lumbar area, 42.9% of the participants reported back pain more than once [39]. However, the “severity” or impact of LBP (medical attention, time off school, etc.) was not reported.

The prevalence of non-trivial LBP in our study (36%) was much higher than that previously reported for LBP requiring medical treatment in adult male collegiate athletes [55] (8.7%). However, our figures compare reasonably well with those of Skoffer et al., where 24.2% of adolescents 15–16 years experienced decreased functioning or need of care because of LBP during the preceding 3 months [42]. Similarly, in the study of Masiero et al., the annual prevalence of LBP interfering in some way with activities was reported to be 20.5% [49]. We have no clear explanation for the decreased prevalence of LBP recorded at follow-up. However, this is in agreement with the study of Sjolie where a reduction of LBP in the preceding year from 58 to 39% was seen at the 3-year follow-up [26]. Interestingly, in a longitudinal study, Grimmer et al. showed that incident cases of LBP showed an irregular pattern among boys with a decrease around the age of 15 years [56].

In the present study there was a high recurrence rate of LBP over the 2-year period; baseline reports of LBP were significantly associated with reports at the 2-year follow-up. This agrees with the results published by Sjolie [26], where 53% of those who reported LBP at baseline (59% among girls and 45% among boys) still reported LBP at follow-up.

In the “prospective” part of the study an interesting association between persistent LBP and reduced trunk flexion during the “fingertip to floor” test was found. This test primarily assesses hip flexion, which tends to be limited by hamstring tightness. Similar associations between muscle tightness and LBP were reported by Sjolie et al. [27] and by Feldman et al. [9]. Bernard et al., in contrast, found a decreased flexibility among boys compared with girls, but it had no association at all with LBP [47]. Clearly further studies are required to investigate this parameter and its role in LBP in adolescents.

Limitations

The main part of our study had the usual limitations of a cross-sectional study, in that no causal relationships could be established between the variables that showed statistically significant relationships. Secondly, our study population was composed of only boys and the findings may not necessarily apply to girls. There are contradictory findings in the literature concerning the association of LBP with gender [7] [57, 58].

Our definition of consequential LBP (LBP requiring medical attention and/or limiting activities), although clinically relevant, dramatically reduced the number of cases (especially incident cases of new LBP at the 2-year follow-up) and therefore limited the statistical power of the prospective part of the study. We therefore suggest that this part of the investigation be repeated in larger studies, to clarify baseline factors associated with an “unfavourable LBP status” over time.

In conclusion, regular involvement in sport was associated with the presence of LBP in adolescents. It likely explained the bivariate associations between better isoinertial trunk muscle performance and the presence of LBP that were no longer evident in multivariable analysis, when involvement in sports was controlled for. Isoinertial trunk performance per se does not appear to be associated with LBP in adolescents. As such, exercise programmes aimed at specifically improving these aspects of function as “preventive” measures for LBP do not appear to be warranted.

Acknowledgments

The project was funded by a grant from the Swiss League against Rheumatism (SLR), which supported the muscle performance tests and participants’ meal vouchers. We would like to thank the physical therapists (O. Dorthe, P. van Groenewoud, and D. Vonlanthen) who performed the tests and the secretary (C. Murith) in charge of project organization. The authors also gratefully acknowledge the volunteers; school authorities, physical education teachers, coaches and trainers for their help with subject recruitment. The authors declare that this study complies with current laws of our country inclusive of ethics approval.

Footnotes

T.S. Keller: deceased.

References

1. Jones GT, Macfarlane GJ. Epidemiology of low back pain in children and adolescents. Arch Dis Child. 2005;90:312–316. doi: 10.1136/adc.2004.056812. [PMC free article] [PubMed] [Cross Ref]
2. Lee JH, Hoshino Y, Nakamura K, Kariya Y, Saita K, Ito K. Trunk muscle weakness as a risk factor for low back pain. A 5-year prospective study. Spine. 1999;24:54–57. doi: 10.1097/00007632-199901010-00013. [PubMed] [Cross Ref]
3. Salminen JJ, Oksanen A, Maki P, Pentti J, Kujala UM. Leisure time physical activity in the young. Correlation with low-back pain, spinal mobility and trunk muscle strength in 15-year-old school children. Int J Sports Med. 1993;14:406–410. doi: 10.1055/s-2007-1021200. [PubMed] [Cross Ref]
4. Sjolie AN, Ljunggren AE. The significance of high lumbar mobility and low lumbar strength for current and future low back pain in adolescents. Spine. 2001;26:2629–2636. doi: 10.1097/00007632-200112010-00019. [PubMed] [Cross Ref]
5. Andersen LB, Wedderkopp N, Leboeuf-Yde C. Association between back pain and physical fitness in adolescents. Spine. 2006;31:1740–1744. doi: 10.1097/01.brs.0000224186.68017.e0. [PubMed] [Cross Ref]
6. Geldhof E, Cardon G, de Bourdeauhuij I, de Clercq D (2004) Trunk extension and flexion endurance testing: test–retest reliability and reference values in 8 to 11 year old children. In: EPOS (23rd meeting). Geneva (Switzerland), conference book p 117 (Abstract)
7. Jones MA, Stratton G, Reilly T, Unnithan VB. Biological risk indicators for recurrent non-specific low back pain in adolescents. Br J Sports Med. 2005;39:137–140. doi: 10.1136/bjsm.2003.009951. [PMC free article] [PubMed] [Cross Ref]
8. Balague F, Damidot P, Nordin M, Parnianpour M, Waldburger M. Cross-sectional study of the isokinetic muscle trunk strength among school children. Spine. 1993;18:1199–1205. [PubMed]
9. Feldman DE, Shrier I, Rossignol M, Abenhaim L. Risk factors for the development of low back pain in adolescence. Am J Epidemiol. 2001;154:30–36. doi: 10.1093/aje/154.1.30. [PubMed] [Cross Ref]
10. Cardon G, Balague F. Low back pain prevention’s effects in schoolchildren. What is the evidence? Eur Spine J. 2004;13:663–679. doi: 10.1007/s00586-004-0749-6. [PMC free article] [PubMed] [Cross Ref]
11. Mannion AF, Dolan P, Adams MA. Psychological questionnaires: do “abnormal” scores precede or follow first-time low back pain? Spine. 1996;21:2603–2611. doi: 10.1097/00007632-199611150-00010. [PubMed] [Cross Ref]
12. Doymaz F, Cavlak U. Relationship between thigh skinfold measurement, hand grip strength, and trunk muscle endurance: differences between the sexes. Adv Ther. 2007;24:1192–1201. doi: 10.1007/BF02877765. [PubMed] [Cross Ref]
13. Knudson D. The validity of recent curl-up tests in young adults. J Strength Cond Res. 2001;15:81–85. doi: 10.1519/1533-4287(2001)015<0081:TVORCU>2.0.CO;2. [PubMed] [Cross Ref]
14. Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Peachey LD, Adrian RH, Geiger S, editors. Handbook of physiology. Bethesda: American Physiological Society; 1983. pp. 555–631.
15. Tursky EA. Muscle training: physiology and practical applications of training for strength versus endurance. Orthop Nurs. 1991;10:27–32. doi: 10.1097/00006416-199103000-00006. [PubMed] [Cross Ref]
16. Marras WS, Wongsam PE. Flexibility and velocity of normal and impaired lumbar spine. Arch Phys Med Rehabil. 1986;20:2531–2543. [PubMed]
17. Jones MA, Stratton G, Reilly T, Unnithan VB. A school-based survey of recurrent non-specific low-back pain prevalence and consequences in children. Health Educ Res. 2004;19:284–289. doi: 10.1093/her/cyg025. [PubMed] [Cross Ref]
18. Adams MA, Mannion AF, Dolan P. Personal risk factors for first-time low back pain. Spine. 1999;24:2497–2505. doi: 10.1097/00007632-199912010-00012. [PubMed] [Cross Ref]
19. Dionne CE, Dunn KM, Croft PR, Nachemson AL, Buchbinder R, Walker BF, Wyatt M, Cassidy JD, Rossignol M, Leboeuf-Yde C, Hartvigsen J, Leino-Arjas P, Latza U, Reis S, Gil Del Real MT, Kovacs FM, Oberg B, Cedraschi C, Bouter LM, Koes BW, Picavet HS, Tulder MW, Burton K, Foster NE, Macfarlane GJ, Thomas E, Underwood M, Waddell G, Shekelle P, Volinn E, Korff M. A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine. 2008;33:95–103. doi: 10.1097/BRS.0b013e31815e7f94. [PubMed] [Cross Ref]
20. Macrae IF, Wright V. Measurement of back movement. Ann Rheum Dis. 1969;28:584–589. doi: 10.1136/ard.28.6.584. [PMC free article] [PubMed] [Cross Ref]
21. Beighton P, Horan F. Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg. 1969;51 B:444–453. [PubMed]
22. Szpalski M, Federspiel CF, Poty S, Hayez JP, Debaize JP. Reproducibility of trunk isoinertial dynamic performance in patients with low back pain. J Spinal Disord. 1992;5:78–85. doi: 10.1097/00002517-199203000-00010. [PubMed] [Cross Ref]
23. Szpalski M, Hayez JP. Objective functional assessment of the efficacy of tenoxicam in the treatment of acute low back pain. A double-blind placebo-controlled study. Br J Rheumatol. 1994;33:74–78. doi: 10.1093/rheumatology/33.1.74. [PubMed] [Cross Ref]
24. Hutten MMR, Hermens HJ. Reliability of lumbar dynamometry measurements in patients with chronic low back pain with test–retest measurements in different day. Eur Spine J. 1997;6:54–62. doi: 10.1007/BF01676575. [PMC free article] [PubMed] [Cross Ref]
25. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ. 1998;316:1236–1238. [PMC free article] [PubMed]
26. Sjolie AN. Persistence and change in nonspecific low back pain among adolescents: a 3-year prospective study. Spine. 2004;29:2452–2457. doi: 10.1097/01.brs.0000143666.58758.8b. [PubMed] [Cross Ref]
27. Sjolie AN. Low-back pain in adolescents is associated with poor hip mobility and high body mass index. Scand J Med Sci Sports. 2004;14:168–175. doi: 10.1111/j.1600-0838.2003.00334.x. [PubMed] [Cross Ref]
28. Mooney V, Andersson GB. Trunk strength testing in patient evaluation and treatment. Spine. 1994;19:2483–2485. doi: 10.1097/00007632-199411000-00023. [PubMed] [Cross Ref]
29. Szpalski M, Parnianpour M. Trunk performance, strength and endurance: measurement techniques and applications. In: Weinstein JN, Wiesel SW, editors. The lumbar spine. Philadelphia: W.B. Saunders; 1996. pp. 1074–1105.
30. Cassisi JE, Robinson ME, O’Conner P, MacMillan M. Trunk strength and lumbar paraspinal muscle activity during isometric exercise in chronic low-back pain patients and controls. Spine. 1993;18:245–251. doi: 10.1097/00007632-199302000-00012. [PubMed] [Cross Ref]
31. Keller TS, Szpalski M, Gunzburg R, Spratt KF. Assessment of trunk function in single and multi-level spinal stenosis: a prospective trial. Clin Biomech. 2003;18:173–181. doi: 10.1016/S0268-0033(02)00190-0. [PubMed] [Cross Ref]
32. Larivière C, Gagnon D, Loisel P. An application of pattern recognition for the comparison of trunk muscle EMG waveforms between subjects with and without chronic low back pain during flexion–extension and lateral bending tasks. J Electromyogr Kinesiol. 2000;10:261–273. doi: 10.1016/S1050-6411(00)00013-4. [PubMed] [Cross Ref]
33. Szpalski M, Michel F, Hayez JP. Determination of trunk motion patterns associated with permanent or transient stenosis of the lumbar spine. Eur Spine J. 1996;5:332–337. doi: 10.1007/BF00304349. [PubMed] [Cross Ref]
34. Muller G, Hille E, Szpalski M. Die Funktion der Rumpfmuskulatur bei Hochleistungsruderern. Sportverletz Sportschaden. 1994;8:134–142. doi: 10.1055/s-2007-993465. [PubMed] [Cross Ref]
35. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn AG. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11:384–396. [PubMed]
36. Wilson GJ, Murphy AJ. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996;22:19–37. doi: 10.2165/00007256-199622010-00003. [PubMed] [Cross Ref]
37. Hutten MM, Hermens HJ. Relationships between isoinertial lumbar dynamometry parameters and demographic parameters in chronic low back pain patients. Eur Spine J. 1998;7:454–460. doi: 10.1007/s005860050108. [PubMed] [Cross Ref]
38. Parnianpour M, Nordin M, Kahanovitz N, Frankel V. 1988 Volvo award in biomechanics. The triaxial coupling of torque generation of trunk muscles during isometric exertions and the effect of fatiguing isoinertial movements on the motor output and movement patterns. Spine. 1988;13:982–992. doi: 10.1097/00007632-198809000-00004. [PubMed] [Cross Ref]
39. Merati G, Negrini S, Carabalona R, Margonato V, Veicsteinas A. Trunk muscular strength in pre-pubertal children with and without back pain. Pediatr Rehabil. 2004;7:97–103. [PubMed]
40. Wedderkopp N, Kjaer P, Hestbaek L, Korsholm L, Leboeuf-Yde C. High-level physical activity in childhood seems to protect against low back pain in early adolescence. Spine J. 2009;9:134–141. doi: 10.1016/j.spinee.2008.02.003. [PubMed] [Cross Ref]
41. Auvinen JP, Tammelin TH, Taimela SP, Zitting PJ, Mutanen PO, Karppinen JI (2008) Musculoskeletal pains in relation to different sport and exercise activities in youth. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e31818047a2 [PubMed]
42. Skoffer B, Foldspang A. Physical activity and low-back pain in schoolchildren. Eur Spine J. 2008;17:373–379. doi: 10.1007/s00586-007-0583-8. [PMC free article] [PubMed] [Cross Ref]
43. Auvinen J, Tammelin T, Taimela S, Zitting P, Karppinen J. Associations of physical activity and inactivity with low back pain in adolescents. Scand J Med Sci Sports. 2008;18:188–194. [PubMed]
44. Leboeuf-Yde C, Larsen K, Ahlstrand I, Volinn E. Coping and back problems: analysis of multiple data sources on an entire cross-sectional cohort of Swedish military recruits. BMC Musculoskelet Disord. 2006;7:39. doi: 10.1186/1471-2474-7-39. [PMC free article] [PubMed] [Cross Ref]
45. Leboeuf-Yde C. Body weight and low back pain. A systematic literature review of 56 journal articles reporting on 65 epidemiologic studies. Spine. 2000;25:226–237. doi: 10.1097/00007632-200001150-00015. [PubMed] [Cross Ref]
46. Leboeuf-Yde C, Kyvik KO, Bruun NH (1999) Low back pain and lifestyle. Part II. Obesity. Information from a population-based sample of 29,424 twin subjects. Spine 24:779–783; discussion 783–774 [PubMed]
47. Bernard JC, Bard R, Pujol A, Combey A, Boussard D, Begue C, Salghetti AM. Muscle assessment in healthy teenagers, Comparison with teenagers with low back pain. Ann Readapt Med Phys. 2008;51:263–283. [PubMed]
48. Balague F, Skovron ML, Nordin M, Dutoit G, Pol LR, Waldburger M. Low back pain in schoolchildren. A study of familial and psychological factors. Spine. 1995;20:1265–1270. [PubMed]
49. Masiero S, Carraro E, Celia A, Sarto D, Ermani M. Prevalence of nonspecific low back pain in schoolchildren aged between 13 and 15 years. Acta Paediatr. 2008;97:212–216. doi: 10.1111/j.1651-2227.2007.00603.x. [PubMed] [Cross Ref]
50. Murphy S, Buckle P, Stubbs D. A cross-sectional study of self-reported back and neck pain among English schoolchildren and associated physical and psychological risk factors. Appl Ergon. 2007;38:797–804. doi: 10.1016/j.apergo.2006.09.003. [PubMed] [Cross Ref]
51. Schanberg LE, Anthony KK, Gil KM, Lefebvre JC, Kredich DW, Macharoni LM. Family pain history predicts child health status in children with chronic rheumatic disease. Pediatrics. 2001;108:E47. doi: 10.1542/peds.108.3.e47. [PubMed] [Cross Ref]
52. Kovacs FM, Gestoso M, Gil del Real MT, Lopez J, Mufraggi N, Mendez JI. Risk factors for non-specific low back pain in schoolchildren and their parents: a population based study. Pain. 2003;103:259–268. doi: 10.1016/S0304-3959(02)00454-2. [PubMed] [Cross Ref]
53. Battie MC, Videman T, Levalahti E, Gill K, Kaprio J. Heritability of low back pain and the role of disc degeneration. Pain. 2007;131:272–280. doi: 10.1016/j.pain.2007.01.010. [PubMed] [Cross Ref]
54. El-Metwally A, Mikkelsson M, Stahl M, Macfarlane GJ, Jones GT, Pulkkinen L, Rose RJ, Kaprio J. Genetic and environmental influences on non-specific low back pain in children: a twin study. Eur Spine J. 2008;17:502–508. doi: 10.1007/s00586-008-0605-1. [PMC free article] [PubMed] [Cross Ref]
55. Nadler SF, Moley P, Malanga GA, Rubbiani M, Prybicien M, Feinberg JH. Functional deficits in athletes with a history of low back pain: a pilot study. Arch Phys Med Rehabil. 2003;83:1753–1758. doi: 10.1053/apmr.2002.35659. [PubMed] [Cross Ref]
56. Grimmer K, Nyland L, Milanese S. Longitudinal investigation of low back pain in Australian adolescents: a five-year study. Physiother Res Int. 2006;11:161–172. doi: 10.1002/pri.340. [PubMed] [Cross Ref]
57. Le Resche L, Mancl LA, Drangsholt MT, Saunders K, Korff M. Relationship of pain and symptoms to pubertal development in adolescents. Pain. 2005;118:201–209. doi: 10.1016/j.pain.2005.08.011. [PubMed] [Cross Ref]
58. Wedderkopp N, Andersen LB, Froberg K, Leboeuf-Yde C. Back pain reporting in young girls appears to be puberty-related. BMC Musculoskelet Disord. 2005;6:52. doi: 10.1186/1471-2474-6-52. [PMC free article] [PubMed] [Cross Ref]

Articles from European Spine Journal are provided here courtesy of Springer-Verlag
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...