• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Neuroimage. Feb 15, 2010; 49(4): 3099–3109.
PMCID: PMC2825373
EMSID: UKMS28737

Ten simple rules for dynamic causal modeling

Abstract

Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.

Keywords: Effective connectivity, DCM, Bayesian model selection, BMS, Model evidence, Model comparison, Bayes factor, Nonlinear dynamics, fMRI, EEG, MEG, Synaptic plasticity

Related citations in PubMed

See reviews...See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...