• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Jun 1978; 42(2): 385–413.
PMCID: PMC281435

Molecular genetics of bacteriophage P22.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (4.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adhya S, Gottesman M, De Crombrugghe B. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2534–2538. [PMC free article] [PubMed]
  • Barksdale L, Arden SB. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol. 1974;28(0):265–299. [PubMed]
  • Bertrand K, Yanofsky C. Regulation of transcription termination in the leader region of the tryptophan operon of Escherichia coli involves tryptophan or its metabolic product. J Mol Biol. 1976 May 15;103(2):339–349. [PubMed]
  • Bezdek M, Amati P. Evidence for two immunity regulator systems in temperature bacteriophages P22 and L. Virology. 1968 Dec;36(4):701–703. [PubMed]
  • Blattner FR, Dahlberg JE. RNA synthesis startpoints in bacteriophage lambda: are the promoter and operator transcribed? Nat New Biol. 1972 Jun 21;237(77):227–232. [PubMed]
  • Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. [PubMed]
  • Botstein D, Chan RK, Waddell CH. Genetics of bacteriophage P22. II. Gene order and gene function. Virology. 1972 Jul;49(1):268–282. [PubMed]
  • Botstein D, Herskowitz I. Properties of hybrids between Salmonella phage P22 and coliphage lambda. Nature. 1974 Oct 18;251(5476):584–589. [PubMed]
  • Botstein D, Levine M. Synthesis and maturation of phage P22 DNA. II. Properties of temperature-sensitive phage mutants defective in DNA metabolism. J Mol Biol. 1968 Jun 28;34(3):643–654. [PubMed]
  • Botstein K, Lew KK, Jarvik V, Swanson CA. Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. J Mol Biol. 1975 Feb 5;91(4):439–462. [PubMed]
  • Botstein D, Matz MJ. A recombination function essential to the growth of bacteriophage P22. J Mol Biol. 1970 Dec 28;54(3):417–440. [PubMed]
  • Botstein D, Waddell CH, King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. [PubMed]
  • Bronson MJ, Levine M. Virulent mutants of bacteriophage p22.I. Isolation and genetic analysis. J Virol. 1971 May;7(5):559–568. [PMC free article] [PubMed]
  • Bronson MJ, Levine M. Virulent mutants of phage P22. II. Physiological analysis of P22 virB-3 and its component mutations. Virology. 1972 Mar;47(3):644–655. [PubMed]
  • Casjens S, King J. P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct. 1974;2(2-4):202–224. [PubMed]
  • Chan RK, Botstein D. Genetics of bacteriophage P22. I. Isolation of prophage deletions which affect immunity to superinfection. Virology. 1972 Jul;49(1):257–267. [PubMed]
  • Chan RK, Botstein D. Specialized transduction by bacteriophage P22 in Salmonella typhimurium: genetic and physical structure of the transducing genomes and the prophage attachment site. Genetics. 1976 Jul;83(3 PT2):433–458. [PMC free article] [PubMed]
  • Chan RK, Botstein D, Watanabe T, Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. [PubMed]
  • Chelala CA, Margolin P. Effects of deletions on cotransduction linkage in Salmonella typhimurium: evidence that bacterial chromosome deletions affect the formation of transducing DNA fragments. Mol Gen Genet. 1974;131(2):97–112. [PubMed]
  • Cowie DB, Szafranski P. Thermal chromatography of DNA-DNA reactions. Biophys J. 1967 Sep;7(5):567–584. [PMC free article] [PubMed]
  • Dopatka HD, Prell HH. Amber mutants of Salmonella-phage P22 in genes engaged in the establishment of lysogeny. Mol Gen Genet. 1973 Jan 24;120(2):157–170. [PubMed]
  • DUBNAU E, STOCKER BA. GENETICS OF PLASMIDS IN SALMONELLA TYPHIMURIUM. Nature. 1964 Dec 12;204:1112–1113. [PubMed]
  • Earnshaw W, Casjens S, Harrison SC. Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. J Mol Biol. 1976 Jun 25;104(2):387–410. [PubMed]
  • Ebel-Tsipis J, Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. 1. Exclusion of generalized transducing particles. Virology. 1971 Sep;45(3):629–637. [PubMed]
  • Ebel-Tsipis J, Botstein D, Fox MS. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):433–448. [PubMed]
  • Ebel-Tsipis J, Fox MS, Botstein D. Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):449–469. [PubMed]
  • Echols H. Developmental pathways for the temperate phage: lysis vs lysogeny,. Annu Rev Genet. 1972;6(0):157–190. [PubMed]
  • Enomoto M. Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology. 1967 Nov;33(3):474–482. [PubMed]
  • Feiss M, Fisher RA, Crayton MA, Egner C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. Virology. 1977 Mar;77(1):281–293. [PubMed]
  • Franklin NC. Altered reading of genetic signals fused to the N operon of bacteriophage lambda: genetic evidence for modification of polymerase by the protein product of the N gene. J Mol Biol. 1974 Oct 15;89(1):33–48. [PubMed]
  • Friedman DI, Ponce-Campos R. Differential effect of phage regulator functions on transcription from various promoters: evidence that the P22 gene 24 and the lambda gene N products distinguish three classes of promoters. J Mol Biol. 1975 Nov 5;98(3):537–549. [PubMed]
  • Gemski P, Jr, Baron LS, Yamamoto N. Formation of hybrids between coliphage lambda and Salmonella phage P22 with a Salmonella typhimurium hybrid sensitive to these phages. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3110–3114. [PMC free article] [PubMed]
  • Gilbert W, Dressler D. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol. 1968;33:473–484. [PubMed]
  • Gottesman MM, Gottesman ME, Gottesman S, Gellert M. Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J Mol Biol. 1974 Sep 15;88(2):471–487. [PubMed]
  • Gough M. Second locus of bacteriophage P22 necessary for the maintenance of lysogeny. J Virol. 1968 Oct;2(10):992–998. [PMC free article] [PubMed]
  • Gough M, Levine M. The circularity of the phage P22 linkage map. Genetics. 1968 Feb;58(2):161–169. [PMC free article] [PubMed]
  • Gough M, Scott JV. Location of the prophage conversion gene of P22. Virology. 1972 Nov;50(2):603–605. [PubMed]
  • Gough M, Tokuno S. Further structural and functional analogies between the repressor regions of phages P22 and lambda. Mol Gen Genet. 1975;138(1):71–79. [PubMed]
  • Herskowitz I. Control of gene expression in bacteriophage lambda. Annu Rev Genet. 1973;7:289–324. [PubMed]
  • Herskowitz I, Signer ER. A site essential for expression of all late genes in bacteriophage lambda. J Mol Biol. 1970 Feb 14;47(3):545–556. [PubMed]
  • Herskowitz I, Signer ER. Substitution mutation in bacteriophage lambda with new specificity for late gene expression. Virology. 1974 Sep;61(1):112–119. [PubMed]
  • Hilliker S, Botstein D. An early regulatory gene of Salmonella phage P22 analogous to gene N of coliphage lambda. Virology. 1975 Dec;68(2):510–524. [PubMed]
  • Hilliker S, Botstein D. Specificity of genetic elements controlling regulation of early functions in temperate bacteriophages. J Mol Biol. 1976 Sep 25;106(3):537–566. [PubMed]
  • Hoffman B, Levine M. Bacteriophage P22 virion protein which performs an essential early function. I. Analysis of 16-ts mutants. J Virol. 1975 Dec;16(6):1536–1546. [PMC free article] [PubMed]
  • Hoffman B, Levine M. Bacteriophage P22 virion protein which performs an essential early function. II. Characterization of the gene 16 function. J Virol. 1975 Dec;16(6):1547–1559. [PMC free article] [PubMed]
  • Hong JS, Smith GR, Ames BN. Adenosine 3':5'-cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2258–2262. [PMC free article] [PubMed]
  • Honigman A, Oppenheim A, Oppenheim AB. A pleiotropic regulatory mutation in lambda bacteriophage. Mol Gen Genet. 1975;138(2):85–111. [PubMed]
  • Hoppe I, Roth J. Specialized transducing phages derived from salmonella phage P22. Genetics. 1974 Apr;76(4):633–654. [PMC free article] [PubMed]
  • Israel V. E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J Virol. 1977 Jul;23(1):91–97. [PMC free article] [PubMed]
  • Israel JV, Anderson TF, Levine M. in vitro MORPHOGENESIS OF PHAGE P22 FROM HEADS AND BASE-PLATE PARTS. Proc Natl Acad Sci U S A. 1967 Feb;57(2):284–291. [PMC free article] [PubMed]
  • Israel V, Rosen H, Levine M. Binding of bacteriophage P22 tail parts to cells. J Virol. 1972 Dec;10(6):1152–1158. [PMC free article] [PubMed]
  • Iwashita S, Kanegasaki S. Smooth specific phage adsorption: endorhamnosidase activity of tail parts of P22. Biochem Biophys Res Commun. 1973 Nov 16;55(2):403–409. [PubMed]
  • Jackson EN, Jackson DA, Deans RJ. EcoRI analysis of bacteriophage P22 DNA packaging. J Mol Biol. 1978 Jan 25;118(3):365–388. [PubMed]
  • Jackson EN, Miller HI, Adams ML. EcoRI restriction endonuclease cleavage site map of bacteriophage P22DNA. J Mol Biol. 1978 Jan 25;118(3):347–363. [PubMed]
  • Jarvik J, Botstein D. A genetic method for determining the order of events in a biological pathway. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2046–2050. [PMC free article] [PubMed]
  • Jarvik J, Botstein D. Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2738–2742. [PMC free article] [PubMed]
  • Jessop AP. A specialised transducing phage of P22 for which the ability to form plagues is associated with transduction of the proAB region. Mol Gen Genet. 1972;114(3):214–222. [PubMed]
  • Jessop AP. Specialized transducing phages derived from phage P22 that carry the pro AB region of the host, Salmonella typhimurium: genetic evidence for their structure and mode of transduction. Genetics. 1976 Jul;83(3 PT2):459–475. [PMC free article] [PubMed]
  • KAISER AD. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. [PubMed]
  • Kaiser D, Masuda T. In vitro assembly of bacteriophage Lambda heads. Proc Natl Acad Sci U S A. 1973 Jan;70(1):260–264. [PMC free article] [PubMed]
  • Kaye R, Barravecchio J, Roth J. Isolation of P22 specialized transducing phage followong F'-episome fusion. Genetics. 1974 Apr;76(4):655–667. [PMC free article] [PubMed]
  • Kemper J. Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. J Bacteriol. 1974 Jan;117(1):94–99. [PMC free article] [PubMed]
  • King J, Casjens S. Catalytic head assembling protein in virus morphogenesis. Nature. 1974 Sep 13;251(5471):112–119. [PubMed]
  • King J, Lenk EV, Botstein D. Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol. 1973 Nov 15;80(4):697–731. [PubMed]
  • Kleckner N. Translocatable elements in procaryotes. Cell. 1977 May;11(1):11–23. [PubMed]
  • Kleckner N, Chan RK, Tye BK, Botstein D. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol. 1975 Oct 5;97(4):561–575. [PubMed]
  • Lee F, Squires CL, Squires C, Yanofsky C. Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region. J Mol Biol. 1976 May 15;103(2):383–393. [PubMed]
  • LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. [PubMed]
  • LEVINE M, CURTISS R. Genetic fine structure of the C region and the linkage map of phage P22. Genetics. 1961 Dec;46:1573–1580. [PMC free article] [PubMed]
  • Levine M, Schott C. Mutations of phage P22 affecting phage DNA synthesis and lysogenization. J Mol Biol. 1971 Nov 28;62(1):53–64. [PubMed]
  • LEVINE M, SMITH HO. SEQUENTIAL GENE ACTION IN THE ESTABLISHMENT OF LYSOGENY. Science. 1964 Dec 18;146(3651):1581–1582. [PubMed]
  • Levine M, Truesdell S, Ramakrishnan T, Bronson MJ. Dual control of lysogeny by bacteriophage P22: an antirepressor locus and its controlling elements. J Mol Biol. 1975 Feb 5;91(4):421–438. [PubMed]
  • Lew K, Casjens S. Identification of early proteins coded by bacteriophage P22. Virology. 1975 Dec;68(2):525–533. [PubMed]
  • Oppenheim A. Suppression of a Pm mutant by the sar mutation for the synthesis of repressor by bacteriophage lambda. J Mol Biol. 1977 Mar 25;111(1):83–89. [PubMed]
  • Ozeki H. Chromosome Fragments Participating in Transduction in Salmonella Typhimurium. Genetics. 1959 May;44(3):457–470. [PMC free article] [PubMed]
  • Pearce U, Stocker BA. Variation in composition of chromosome fragments transduced by phage P22. Virology. 1965 Nov;27(3):290–296. [PubMed]
  • Pipas JM, Reeves RH. Patterns of transcription in bacteriophage P22-infected Salmonella typhimurium. J Virol. 1977 Feb;21(2):825–828. [PMC free article] [PubMed]
  • Poteete AR, King J. Functions of two new genes in Salmonella phage P22 assembly. Virology. 1977 Feb;76(2):725–739. [PubMed]
  • Radding CM, Szpirer J, Thomas R. THE STRUCTURAL GENE FOR lambda EXONUCLEASE. Proc Natl Acad Sci U S A. 1967 Feb;57(2):277–283. [PMC free article] [PubMed]
  • Raj AS, Raj AY, Schmieger H. Phage genes involved in the formation generalized transducing particles in Salmonella--Phage P22. Mol Gen Genet. 1974;135(2):175–184. [PubMed]
  • Rao GR, Burma DP. Purification and properties of phage P22-induced lysozyme. J Biol Chem. 1971 Nov;246(21):6474–6479. [PubMed]
  • Rao RN. Bacteriophage P22 controlled exclusion in Salmonella typhimurium. J Mol Biol. 1968 Aug 14;35(3):607–622. [PubMed]
  • Rao RN, Smith HO. Phage P22 lysogens of a Salmonella typhimurium mutant deleted at the normal prophage attachment site. Virology. 1968 Oct;36(2):328–330. [PubMed]
  • Reichardt L, Kaiser AD. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. [PMC free article] [PubMed]
  • Rhoades M, MacHattie LA, Thomas CA., Jr The P22 bacteriophage DNA molecule. I. The mature form. J Mol Biol. 1968 Oct 14;37(1):21–40. [PubMed]
  • Rhoades M, Thomas CA., Jr The P22 bacteriophage DNA molecule. II. Circular intracellular forms. J Mol Biol. 1968 Oct 14;37(1):41–61. [PubMed]
  • Roberts JW. Transcription termination and late control in phage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3300–3304. [PMC free article] [PubMed]
  • Roberts JW, Roberts CW. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc Natl Acad Sci U S A. 1975 Jan;72(1):147–151. [PMC free article] [PubMed]
  • Roth JR, Hartman PE. Heterogeneity in P22 transducing particles. Virology. 1965 Nov;27(3):297–307. [PubMed]
  • Schmieger H. The molecular structure of the transducing particles of Salmonella phage P22. II. Density gradient analysis of DNA. Mol Gen Genet. 1970;109(4):323–337. [PubMed]
  • Schmieger H, Backhaus H. Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet. 1976 Feb 2;143(3):307–309. [PubMed]
  • Schumann W, Lindenblatt E, Bade EG. Bacteriophage-specific DNA-binding proteins in P22-lysogenic and in P22-infected Salmonella typhimurium. J Virol. 1976 Oct;20(1):334–338. [PMC free article] [PubMed]
  • Séchaud J, Streisinger G, Emrich J, Newton J, Lanford H, Reinhold H, Stahl MM. Chromosome structure in phage T4, II. Terminal redundancy and heterozygosis. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1333–1339. [PMC free article] [PubMed]
  • Skalka SA, Hanson P. Comparisons of the distribution of nucleotides and common sequences in deoxyribonucleic acid from selected bacteriophages. J Virol. 1972 Apr;9(4):583–593. [PMC free article] [PubMed]
  • Smith HO. Defective phage formation by lysogens of integration deficient phage P22 mutants. Virology. 1968 Feb;34(2):203–223. [PubMed]
  • SMITH HO, LEVINE M. TWO SEQUENTIAL REPRESSIONS OF DNA SYNTHESIS IN THE ESTABLISHMENT OF LYSOGENY BY PHAGE P22 AND ITS MUTANTS. Proc Natl Acad Sci U S A. 1964 Aug;52:356–363. [PMC free article] [PubMed]
  • Smith HO, Levine M. Gene order in prophage P22. Virology. 1965 Oct;27(2):229–231. [PubMed]
  • Smith HO, Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. [PubMed]
  • Smith-Keary PF. Restricted trandsuction by bacteriophage P22 in Salmonella typhimurium. Genet Res. 1966 Aug;8(1):73–82. [PubMed]
  • STOCKER BA. Transduction of flagellar characters in Salmonella. J Gen Microbiol. 1953 Dec;9(3):410–433. [PubMed]
  • STREISINGER G, EDGAR RS, DENHARDT GH. CHROMOSOME STRUCTURE IN PHAGE T4. I. CIRCULARITY OF THE LINKAGE MAP. Proc Natl Acad Sci U S A. 1964 May;51:775–779. [PMC free article] [PubMed]
  • Streisinger G, Emrich J, Stahl MM. Chromosome structure in phage t4, iii. Terminal redundancy and length determination. Proc Natl Acad Sci U S A. 1967 Feb;57(2):292–295. [PMC free article] [PubMed]
  • Susskind MM, Botstein D. Mechanism of action of Salmonella phage P22 antirepressor. J Mol Biol. 1975 Oct 25;98(2):413–424. [PubMed]
  • Susskind MM, Botstein D, Wright A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology. 1974 Dec;62(2):350–366. [PubMed]
  • Susskind MM, Wright A, Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology. 1971 Sep;45(3):638–652. [PubMed]
  • Susskind MM, Wright A, Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. IV. Genetics and physiology of sieB exclusion. Virology. 1974 Dec;62(2):367–384. [PubMed]
  • Szpirer J, Thomas R, Radding CM. Hybrids of bacteriophages lambda and phi 80: a study of nonvegetative functions. Virology. 1969 Apr;37(4):585–596. [PubMed]
  • Taylor A. Endopeptidase activity of phage lamba-endolysin. Nat New Biol. 1971 Dec 1;234(48):144–145. [PubMed]
  • Tokuno SI, Goldschmidt EP, Gough M. Mutant of Salmonella typhimurium that channels infecting bacteriophage P22 toward lysogenization. J Bacteriol. 1974 Aug;119(2):508–513. [PMC free article] [PubMed]
  • Tokuno S, Gough M. Site c27 in phage P22 and control of the pathway to lysogeny. Mol Gen Genet. 1976 Mar 22;144(2):199–204. [PubMed]
  • Tokuno SI, Gough M. Regulation of Bacteriophage P22 DNA synthesis and repressor levels in P22cly infections. J Virol. 1977 Mar;21(3):956–964. [PMC free article] [PubMed]
  • Tye BK. A mutant of phage P22 with randomly permuted DNA. J Mol Biol. 1976 Jan 25;100(3):421–426. [PubMed]
  • Tye BK, Chan RK, Botstein D. Packaging of an oversize transducing genome by Salmonella phage P22. J Mol Biol. 1974 Jan 5;85(4):485–500. [PubMed]
  • Tye BK, Huberman JA, Botstein D. Non-random circular permutation of phage P22 DNA. J Mol Biol. 1974 Jan 5;85(4):501–528. [PubMed]
  • Walsh J, Meynell GG. The isolation of non-excluding mutants of phage P22. J Gen Virol. 1967 Oct;1(4):581–582. [PubMed]
  • Watanabe T, Ogata Y, Chan RK, Botstein D. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology. 1972 Dec;50(3):874–882. [PubMed]
  • Weaver S, Levine M. The timing of erf-mediated recombination in replication, lysogenization, and the formation of recombinant progeny by Salmonella phage P22. Virology. 1977 Jan;76(1):19–28. [PubMed]
  • Weaver S, Levine M. Recombinational circularization of Salmonella phage P22 DNA. Virology. 1977 Jan;76(1):29–38. [PubMed]
  • Weaver S, Levine M. Replication in situ and DNA encapsulation following induction of an excision-defective lysogen of Salmonella bacteriophage P22. J Mol Biol. 1978 Jan 25;118(3):389–411. [PubMed]
  • Weil J, Cunningham R, Martin R, 3rd, Mitchell E, Bolling B. Characteristics of lambda p4, a lambda derivative containing 9 per cent excess DNA. Virology. 1972 Nov;50(2):373–380. [PubMed]
  • Westmoreland BC, Szybalski W, Ris H. Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science. 1969 Mar 21;163(3873):1343–1348. [PubMed]
  • Wilgus GS, Mural RJ, Friedman DI, Fiandt M, Szybalski W. Lambda imm lambda-434: a phage with a hybrid immunity region. Virology. 1973 Nov;56(1):46–53. [PubMed]
  • Wing JP. Integration and induction of phage P22 in a recombination-deficient mutant of Salmonella typhimurium. J Virol. 1968 Jul;2(7):702–709. [PMC free article] [PubMed]
  • Wright A, Kanegasaki S. Molecular aspects of lipopolysaccharides. Physiol Rev. 1971 Oct;51(4):748–784. [PubMed]
  • Yamagami H, Yamamoto N. Contribution of the bacterial recombination function to replication of bacteriophage P2. J Mol Biol. 1970 Oct 28;53(2):281–285. [PubMed]
  • FUKAZAWA Y, HARTMAN PE. A P22 BACTERIOPHAGE MUTANT DEFECTIVE IN ANTIGEN CONVERSION. Virology. 1964 Jun;23:279–283. [PubMed]
  • ZINDER ND. Bacterial transduction. J Cell Physiol Suppl. 1955 May;45(Suppl 2):23–49. [PubMed]
  • ZINDER ND. Lysogenization and superinfection immunity in Salmonella. Virology. 1958 Apr;5(2):291–326. [PubMed]
  • ZINDER ND, LEDERBERG J. Genetic exchange in Salmonella. J Bacteriol. 1952 Nov;64(5):679–699. [PMC free article] [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...