• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Jan 1988; 85(2): 339–343.
PMCID: PMC279543

Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload.

Abstract

Hypertrophy, an increase in cell size without cell division, is a fundamental adaptive process employed by postmitotic cardiac and skeletal muscle cells. Cardiac myosins undergo an adult-to-fetal isoform transition in various models of hypertrophy. Using gene-specific cDNA probes, we show here that in the adult myocardium the mRNAs encoding the fetal (skeletal muscle type) isoforms of alpha-actin and sarcomeric tropomyosin are re-expressed within 2 days in response to pressure overload. In addition, atrial natriuretic factor mRNA, so far believed to be expressed primarily in the atria, was readily detectable in the ventricles of neonates and was induced to markedly high levels in pressure-overloaded adult ventricles. In contrast, cardiac hypertrophy produced by thyroid hormone excess was not associated with induction of the atrial natriuretic factor gene or fetal contractile protein isogenes. Furthermore, the c-fos and c-myc protooncogenes and a major heat shock protein gene (hsp70) are induced in the ventricular myocardium within 1 hr after imposition of pressure overload. These results suggest that induction of cellular protooncogenes and heat shock (stress) protein genes is an early response to pressure overload, whereas reinduction of the genes normally expressed only in perinatal life, such as fetal isoforms of contractile proteins and atrial natriuretic factor, is a later event. These two types of responses might represent the general pattern of growth induction to work overload by terminally differentiated cells that have lost the ability to undergo DNA replication.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. [PubMed]
  • Schwartz K, Lecarpentier Y, Martin JL, Lompré AM, Mercadier JJ, Swynghedauw B. Myosin isoenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol. 1981 Dec;13(12):1071–1075. [PubMed]
  • Isoyama S, Wei JY, Izumo S, Fort P, Schoen FJ, Grossman W. Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat. Circ Res. 1987 Sep;61(3):337–345. [PubMed]
  • Lompré AM, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem. 1984 May 25;259(10):6437–6446. [PubMed]
  • Mayer Y, Czosnek H, Zeelon PE, Yaffe D, Nudel U. Expression of the genes coding for the skeletal muscle and cardiac actions in the heart. Nucleic Acids Res. 1984 Jan 25;12(2):1087–1100. [PMC free article] [PubMed]
  • Garfinkel LI, Periasamy M, Nadal-Ginard B. Cloning and characterization of cDNA sequences corresponding to myosin light chains 1, 2, and 3, troponin-C, troponin-T, alpha-tropomyosin, and alpha-actin. J Biol Chem. 1982 Sep 25;257(18):11078–11086. [PubMed]
  • Schwartz K, de la Bastie D, Bouveret P, Oliviéro P, Alonso S, Buckingham M. Alpha-skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ Res. 1986 Nov;59(5):551–555. [PubMed]
  • Helfman DM, Cheley S, Kuismanen E, Finn LA, Yamawaki-Kataoka Y. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol Cell Biol. 1986 Nov;6(11):3582–3595. [PMC free article] [PubMed]
  • Ruiz-Opazo N, Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem. 1987 Apr 5;262(10):4755–4765. [PubMed]
  • de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science. 1985 Nov 15;230(4727):767–770. [PubMed]
  • Maki M, Takayanagi R, Misono KS, Pandey KN, Tibbetts C, Inagami T. Structure of rat atrial natriuretic factor precursor deduced from cDNA sequence. Nature. 1984 Jun 21;309(5970):722–724. [PubMed]
  • Bloch KD, Seidman JG, Naftilan JD, Fallon JT, Seidman CE. Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways. Cell. 1986 Dec 5;47(5):695–702. [PubMed]
  • Ruoslahti E, Pihko H, Seppälä M. Alpha-fetoprotein: immunochemical purification and chemical properties. Expression in normal state and in malignant and non-malignant liver disease. Transplant Rev. 1974;20(0):38–60. [PubMed]
  • Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. [PubMed]
  • Makino R, Hayashi K, Sugimura T. C-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature. 1984 Aug 23;310(5979):697–698. [PubMed]
  • Starksen NF, Simpson PC, Bishopric N, Coughlin SR, Lee WM, Escobedo JA, Williams LT. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8348–8350. [PMC free article] [PubMed]
  • Kingston RE, Baldwin AS, Jr, Sharp PA. Regulation of heat shock protein 70 gene expression by c-myc. Nature. 1984 Nov 15;312(5991):280–282. [PubMed]
  • Hammond GL, Lai YK, Markert CL. Diverse forms of stress lead to new patterns of gene expression through a common and essential metabolic pathway. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3485–3488. [PMC free article] [PubMed]
  • Dalla-Favera R, Gelmann EP, Martinotti S, Franchini G, Papas TS, Gallo RC, Wong-Staal F. Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci U S A. 1982 Nov;79(21):6497–6501. [PMC free article] [PubMed]
  • Curran T, MacConnell WP, van Straaten F, Verma IM. Structure of the FBJ murine osteosarcoma virus genome: molecular cloning of its associated helper virus and the cellular homolog of the v-fos gene from mouse and human cells. Mol Cell Biol. 1983 May;3(5):914–921. [PMC free article] [PubMed]
  • Wu BJ, Morimoto RI. Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6070–6074. [PMC free article] [PubMed]
  • Weinberg RA. The action of oncogenes in the cytoplasm and nucleus. Science. 1985 Nov 15;230(4727):770–776. [PubMed]
  • Alpert NR, Mulieri LA. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res. 1982 Apr;50(4):491–500. [PubMed]
  • Franch HA, Callahan LT, Blaine EH. Plasma and atrial content of atrial natriuretic factor in cardiomyopathic hamsters. Life Sci. 1986 Sep 29;39(13):1151–1159. [PubMed]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...