• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of mbcLink to Publisher's site
Mol Biol Cell. May 1997; 8(5): 767–778.
PMCID: PMC276128

Multiple systems for recognition of apoptotic lymphocytes by macrophages.


In vivo, apoptotic lymphocytes are recognized and phagocytosed by macrophages well before the final stages of DNA degradation and cell lysis. The recognition process is apparently triggered by the exposure of phosphatidylserine (PS) on the cell surface, an event which precedes cell lysis by several hours. However, multiple receptors appear to respond to this event. We demonstrate here that both activated and unactivated macrophages recognize PS, but with different receptor systems. Phagocytosis of apoptotic lymphocytes by activated (but not by unactivated) macrophages is inhibited by pure PS vesicles as well as by N-acetylglucosamine, implicating involvement of a lectin-like receptor in this case. Conversely, uptake of apoptotic lymphocytes by unactivated (but not by activated) macrophages is inhibited by PS on the surface of erythrocytes as well as by the tetrapeptide RGDS and cationic amino acids and sugars, implicating involvement of the vitronectin receptor in this case. Recognition by both classes of macrophages is blocked by the monocyte-specific monoclonal antibody 61D3. The signal recognized by activated macrophages appears to develop on the lymphocyte prior to assembly of the signal recognized by unactivated macrophages. Collectively, these results suggest that PS exposure on the surface of apoptotic lymphocytes generates a complex and evolving signal recognized by different receptor complexes on activated and unactivated macrophages.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. [PubMed]
  • Akbar AN, Savill J, Gombert W, Bofill M, Borthwick NJ, Whitelaw F, Grundy J, Janossy G, Salmon M. The specific recognition by macrophages of CD8+,CD45RO+ T cells undergoing apoptosis: a mechanism for T cell clearance during resolution of viral infections. J Exp Med. 1994 Nov 1;180(5):1943–1947. [PMC free article] [PubMed]
  • Allen TM, Austin GA, Chonn A, Lin L, Lee KC. Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta. 1991 Jan 9;1061(1):56–64. [PubMed]
  • Cohen JJ, Duke RC, Fadok VA, Sellins KS. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. [PubMed]
  • Duvall E, Wyllie AH, Morris RG. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology. 1985 Oct;56(2):351–358. [PMC free article] [PubMed]
  • Fadok VA, Laszlo DJ, Noble PW, Weinstein L, Riches DW, Henson PM. Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J Immunol. 1993 Oct 15;151(8):4274–4285. [PubMed]
  • Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol. 1992 Dec 15;149(12):4029–4035. [PubMed]
  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed]
  • Flora PK, Gregory CD. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol. 1994 Nov;24(11):2625–2632. [PubMed]
  • Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994 Sep 1;84(5):1415–1420. [PubMed]
  • Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. [PubMed]
  • Lee KD, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993 Jan 26;32(3):889–899. [PubMed]
  • Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. [PMC free article] [PubMed]
  • McEvoy L, Williamson P, Schlegel RA. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci U S A. 1986 May;83(10):3311–3315. [PMC free article] [PubMed]
  • Morris RG, Hargreaves AD, Duvall E, Wyllie AH. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol. 1984 Jun;115(3):426–436. [PMC free article] [PubMed]
  • Nunez G, Ugolini V, Capra JD, Stastny P. Monoclonal antibodies against human monocytes. II. Recognition of two distinct cell surface molecules. Scand J Immunol. 1982 Dec;16(6):515–523. [PubMed]
  • Ottnad E, Parthasarathy S, Sambrano GR, Ramprasad MP, Quehenberger O, Kondratenko N, Green S, Steinberg D. A macrophage receptor for oxidized low density lipoprotein distinct from the receptor for acetyl low density lipoprotein: partial purification and role in recognition of oxidatively damaged cells. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1391–1395. [PMC free article] [PubMed]
  • Pinson DM, Phillips TA, Pace JL, MacKay RJ, Russell SW. Activation-associated marker proteins: peptide mapping and their expression in macrophage cell lines. Biochem Biophys Res Commun. 1991 Apr 30;176(2):882–886. [PubMed]
  • Pradhan D, Williamson P, Schlegel RA. Phosphatidylserine vesicles inhibit phagocytosis of erythrocytes with a symmetric transbilayer distribution of phospholipids. Mol Membr Biol. 1994 Jul-Sep;11(3):181–187. [PubMed]
  • Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9580–9584. [PMC free article] [PubMed]
  • Rigotti A, Acton SL, Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem. 1995 Jul 7;270(27):16221–16224. [PubMed]
  • Sambrano GR, Steinberg D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1396–1400. [PMC free article] [PubMed]
  • Savill J, Dransfield I, Hogg N, Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 1990 Jan 11;343(6254):170–173. [PubMed]
  • Savill J, Fadok V, Henson P, Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today. 1993 Mar;14(3):131–136. [PubMed]
  • Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992 Oct;90(4):1513–1522. [PMC free article] [PubMed]
  • Savill JS, Henson PM, Haslett C. Phagocytosis of aged human neutrophils by macrophages is mediated by a novel "charge-sensitive" recognition mechanism. J Clin Invest. 1989 Nov;84(5):1518–1527. [PMC free article] [PubMed]
  • Schlegel RA, Reed JA, McEvoy L, Algarin L, Williamson P. Phospholipid asymmetry of loaded red cells. Methods Enzymol. 1987;149:281–293. [PubMed]
  • Schlegel RA, Stevens M, Lumley-Sapanski K, Williamson P. Altered lipid packing identifies apoptotic thymocytes. Immunol Lett. 1993 Jun;36(3):283–288. [PubMed]
  • Ugolini V, Nunez G, Smith RG, Stastny P, Capra JD. Initial characterization of monoclonal antibodies against human monocytes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6764–6768. [PMC free article] [PubMed]
  • Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995 Nov 1;182(5):1597–1601. [PMC free article] [PubMed]
  • Williamson P, Algarin L, Bateman J, Choe HR, Schlegel RA. Phospholipid asymmetry in human erythrocyte ghosts. J Cell Physiol. 1985 May;123(2):209–214. [PubMed]

Articles from Molecular Biology of the Cell are provided here courtesy of American Society for Cell Biology


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...