Logo of jcmPermissionsJournals.ASM.orgJournalJCM ArticleJournal InfoAuthorsReviewers
J Clin Microbiol. 1981 Oct; 14(4): 365–369.
PMCID: PMC271985

Plasmid-encoded lysine decarboxylation in Proteus morganii.


As a rule, Proteus morganii does not decarboxylate lysine. However, lysine-positive P. morganii strains have been recently described. We suspected a plasmid origin for this atypical character, and we analyzed 14 strains to study this question. Among these strains, 8 yielded lysine-negative segregants after acridine orange or ethidium bromide treatment, and 10 transferred their lysine-positive character to a recipient P. morganii strain. All of the 14 strains analyzed at least segregated or conjugated. Three lysine-positive transconjugants, in turn, segregated lysine-negative variants after ethidium bromide treatment. The eight wild-type lysine-positive strains that segregated lysine-negative subclones contained a large (35 to 45 megadaltons) plasmid detectable by agarose gel electrophoresis. Similarly, the 10 lysine-positive transconjugants contained a plasmid of the same size, whereas P. morganii 1000, the recipient strain, did not contain any detectable plasmid. The large plasmid clearly disappeared in 9 of 11 lysine-negative segregants analyzed. It is concluded that the lysine-positive character of these P. morganii strains is plasmid encoded, and the taxonomical implications are discussed.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (840K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed]
  • Cornelis G, Bennett PM, Grinsted J. Properties of pGC1, a lac plasmid orginating in Yersinia enterocolitica 842. J Bacteriol. 1976 Sep;127(3):1058–1062. [PMC free article] [PubMed]
  • Cornelis G, Ghosal D, Saedler H. Tn951: a new transposon carrying a lactose operon. Mol Gen Genet. 1978 Apr 6;160(2):215–224. [PubMed]
  • Cornelis G, Saedler H. Deletions and an inversion induced by a resident IS1 of the lactose transposon Tn951. Mol Gen Genet. 1980;178(2):367–374. [PubMed]
  • Falkow S, Baron LS. EPISOMIC ELEMENT IN A STRAIN OF SALMONELLA TYPHOSA. J Bacteriol. 1962 Sep;84(3):581–589. [PMC free article] [PubMed]
  • Hickman FW, Framer JJ, 3rd, Steigerwalt AG, Brenner DJ. Unusual groups of Morganella ("Proteus") morganii isolated from clinical specimens: lysine-positive and ornithine-negative biogroups. J Clin Microbiol. 1980 Jul;12(1):88–94. [PMC free article] [PubMed]
  • Humphreys GO, Willshaw GA, Anderson ES. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta. 1975 Apr 2;383(4):457–463. [PubMed]
  • Ishiguro N, Sato G. Properties of a transmissible plasmid conferring citrate-utilizing ability in Escherichia coli of human origin. J Gen Microbiol. 1980 Feb;116(2):553–556. [PubMed]
  • Layne P, Hu AS, Balows A, Davis BR. Extrachromosomal nature of hydrogen sulfide production in Escherichia coli. J Bacteriol. 1971 Jun;106(3):1029–1030. [PMC free article] [PubMed]
  • Le Minor L, Coynault C, Rohde R, Rowe B, Aleksic S. Localisation plasmidique du déterminant génétique du caractète atypique "saccharose plus" des Salmonella. Ann Microbiol (Paris) 1973 Oct;124(3):295–306. [PubMed]
  • Sharp PA, Hsu MT, Otsubo E, Davidson N. Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. I. Structure of F-prime factors. J Mol Biol. 1972 Nov 14;71(2):471–497. [PubMed]
  • Stanisich VA, Bennett PM, Oritz JM. A molecular analysis of transductional marker rescue involving P-group plasmids in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Feb 2;143(3):333–337. [PubMed]
  • TAYLOR WI. Isolation of Salmonellae from food samples. V. Determination of the method of choice for enumeration of Salmonella. Appl Microbiol. 1961 Nov;9:487–490. [PMC free article] [PubMed]
  • Wachsmuth IK, Davis BR, Allen SD. Ureolytic Escherichia coli of human origin: serological, epidemiological, and genetic analysis. J Clin Microbiol. 1979 Dec;10(6):897–902. [PMC free article] [PubMed]
  • Wohlhieter JA, Lazere JR, Snellings NJ, Johnson EM, Synenki RM, Baron LS. Characterization of transmissible genetic elements from sucrose-fermenting Salmonella strains. J Bacteriol. 1975 May;122(2):401–406. [PMC free article] [PubMed]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...