• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of ploscompComputational BiologyView this ArticleSubmit to PLoSGet E-mail AlertsContact UsPublic Library of Science (PLoS)
PLoS Comput Biol. Jan 2009; 5(1): e1000268.
Published online Jan 23, 2009. doi:  10.1371/journal.pcbi.1000268
PMCID: PMC2613533

Computational Modeling of the Hematopoietic Erythroid-Myeloid Switch Reveals Insights into Cooperativity, Priming, and Irreversibility

Rustom Antia, Editor


Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1–GATA-1 switch also interacts with another mutually antagonistic pair, C/EBPα–FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes.

Author Summary

An important question in developmental biology is how different lineage choices are regulated at the genetic level. Robust lineage decisions are implemented by genetic switches, whereby one set of master genes are ON and another set are OFF, leading to a specific expression pattern of genes for a particular lineage. We develop a computational model to illustrate these principles as applied to the hematopoietic erythroid-myeloid lineage choice, where two master regulator genes, PU.1 and GATA-1, function as a genetic switch. The model, which is based upon known interactions, suggests missing interactions between the master genes, which we hypothesize, so as to reproduce the desired dynamics. Furthermore, there exist feedback interactions between the master genes and their downstream targets. When these are included in the model, the dynamics imply that the feedback is responsible for irreversible commitment. Our results suggest the search for missing interactions between the master genes in terms of a coregulated cofactor. The second important result of the model is that reprogramming irreversible cell fate may be possible by perturbing feedback regulation between the master genes and their downstream targets. Hence, dynamical modeling provides prediction of novel mechanisms and also strategies for reprogramming the fates of cells.

Articles from PLoS Computational Biology are provided here courtesy of Public Library of Science
PubReader format: click here to try


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...