• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. May 1989; 63(5): 2099–2107.
PMCID: PMC250626

Transcriptional activation of bovine leukemia virus in blood cells from experimentally infected, asymptomatic sheep with latent infections.

Abstract

Infection by bovine leukemia virus (BLV) is characterized by a long latency period, after which some individuals develop B-cell tumors. The behavior of BLV and related retroviruses during the latency period between initial infection and subsequent tumorigenesis is poorly understood. We used in situ hybridization to detect BLV transcripts in individual peripheral blood mononuclear cells from experimentally infected, asymptomatic sheep with latent infections. Viral RNA was not found in most peripheral blood cells that had been isolated as rapidly as possible from circulating blood, but it was present in rare cells. BLV RNA transcripts increased in a biphasic manner within a few hours after the blood cells were placed in culture. Exposure to fetal bovine serum was identified as the principal cause of this transcriptional activation, which occurred in fewer than 1 in 1,000 cells. Agents known to activate immune cells polyclonally caused a further increase in the number of cells containing BLV RNA within 8 h. In some cases, the numbers of viral transcripts within individual cells also increased. Thus, BLV is not detectably expressed in most resting lymphocytes circulating in the blood, but its transcription is activated by components of fetal bovine serum and can be augmented by molecules that mimic activation of immune cells. This activation, which might occur in lymphoid tissue during an immune response, may lead to the synthesis of viral regulatory proteins that are thought to initiate tumorigenesis through host cell genes.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altman R, Harrich D, Garcia JA, Gaynor RB. Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns. J Virol. 1988 Apr;62(4):1339–1346. [PMC free article] [PubMed]
  • Astier T, Mamoun R, Guillemain B, Duplan JF, Parodi AL. Bovine leukemia virus (BLV) specific RNA in infected cells. Ann Rech Vet. 1978;9(4):643–649. [PubMed]
  • Baliga V, Ferrer JF. Expression of the bovine leukemia virus and its internal antigen in blood lymphocytes. Proc Soc Exp Biol Med. 1977 Nov;156(2):388–391. [PubMed]
  • Burny A, Cleuter Y, Kettmann R, Mammerickx M, Marbaix G, Portetelle D, Van den Broeke A, Willems L, Thomas R. Bovine leukaemia: facts and hypotheses derived from the study of an infectious cancer. Cancer Surv. 1987;6(1):139–159. [PubMed]
  • Cambier JC, Ransom JT. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu Rev Immunol. 1987;5:175–199. [PubMed]
  • Chatterjee R, Gupta P, Kashmiri SV, Ferrer JF. Phytohemagglutinin activation of the transcription of the bovine leukemia virus genome requires de novo protein synthesis. J Virol. 1985 Jun;54(3):860–863. [PMC free article] [PubMed]
  • Chen IS, Slamon DJ, Rosenblatt JD, Shah NP, Quan SG, Wachsman W. The x gene is essential for HTLV replication. Science. 1985 Jul 5;229(4708):54–58. [PubMed]
  • Couez D, Deschamps J, Kettmann R, Stephens RM, Gilden RV, Burny A. Nucleotide sequence analysis of the long terminal repeat of integrated bovine leukemia provirus DNA and of adjacent viral and host sequences. J Virol. 1984 Feb;49(2):615–620. [PMC free article] [PubMed]
  • Cox KH, DeLeon DV, Angerer LM, Angerer RC. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. [PubMed]
  • DeFranco AL. Molecular aspects of B-lymphocyte activation. Annu Rev Cell Biol. 1987;3:143–178. [PubMed]
  • Derse D. Bovine leukemia virus transcription is controlled by a virus-encoded trans-acting factor and by cis-acting response elements. J Virol. 1987 Aug;61(8):2462–2471. [PMC free article] [PubMed]
  • Derse D. trans-acting regulation of bovine leukemia virus mRNA processing. J Virol. 1988 Apr;62(4):1115–1119. [PMC free article] [PubMed]
  • Deschamps J, Kettmann R, Burny A. Experiments with cloned complete tumor-derived bovine leukemia virus information prove that the virus is totally exogenous to its target animal species. J Virol. 1981 Nov;40(2):605–609. [PMC free article] [PubMed]
  • Djilali S, Parodi AL, Levy D. Bovine leukemia virus replicates in sheep B lymphocytes under a T cell released factor. Eur J Cancer Clin Oncol. 1987 Jan;23(1):81–85. [PubMed]
  • Fauci AS. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. [PubMed]
  • Franchini G, Wong-Staal F, Gallo RC. Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6207–6211. [PMC free article] [PubMed]
  • Graves DC, Ferrer JF. In vitro transmission and propagation of the bovine leukemia virus in monolayer cell cultures. Cancer Res. 1976 Nov;36(11 Pt 1):4152–4159. [PubMed]
  • Greene WC, Leonard WJ, Wano Y, Svetlik PB, Peffer NJ, Sodroski JG, Rosen CA, Goh WC, Haseltine WA. Trans-activator gene of HTLV-II induces IL-2 receptor and IL-2 cellular gene expression. Science. 1986 May 16;232(4752):877–880. [PubMed]
  • Gupta P, Ferrer JF. Expression of bovine leukemia virus genome is blocked by a nonimmunoglobulin protein in plasma from infected cattle. Science. 1982 Jan 22;215(4531):405–407. [PubMed]
  • Gupta P, Kashmiri SV, Ferrer JF. Transcriptional control of the bovine leukemia virus genome: role and characterization of a non-immunoglobulin plasma protein from bovine leukemia virus-infected cattle. J Virol. 1984 Apr;50(1):267–270. [PMC free article] [PubMed]
  • Harada S, Koyanagi Y, Nakashima H, Kobayashi N, Yamamoto N. Tumor promoter, TPA, enhances replication of HTLV-III/LAV. Virology. 1986 Oct 30;154(2):249–258. [PubMed]
  • Harper ME, Marselle LM, Gallo RC, Wong-Staal F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772–776. [PMC free article] [PubMed]
  • Hidaka M, Inoue J, Yoshida M, Seiki M. Post-transcriptional regulator (rex) of HTLV-1 initiates expression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J. 1988 Feb;7(2):519–523. [PMC free article] [PubMed]
  • Inoue J, Seiki M, Taniguchi T, Tsuru S, Yoshida M. Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type 1. EMBO J. 1986 Nov;5(11):2883–2888. [PMC free article] [PubMed]
  • Inoue J, Yoshida M, Seiki M. Transcriptional (p40x) and post-transcriptional (p27x-III) regulators are required for the expression and replication of human T-cell leukemia virus type I genes. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3653–3657. [PMC free article] [PubMed]
  • Kettmann R, Deschamps J, Cleuter Y, Couez D, Burny A, Marbaix G. Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3' proximate cellular sequences. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2465–2469. [PMC free article] [PubMed]
  • Kettmann R, Marbaix G, Cleuter Y, Portetelle D, Mammerickx M, Burny A. Genomic integration of bovine leukemia provirus and lack of viral RNA expression in the target cells of cattle with different responses to BLV infection. Leuk Res. 1980;4(6):509–519. [PubMed]
  • Kiyokawa T, Seiki M, Iwashita S, Imagawa K, Shimizu F, Yoshida M. p27x-III and p21x-III, proteins encoded by the pX sequence of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8359–8363. [PMC free article] [PubMed]
  • Lawrence JB, Singer RH. Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 1985 Mar 11;13(5):1777–1799. [PMC free article] [PubMed]
  • Leung K, Nabel GJ. HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature. 1988 Jun 23;333(6175):776–778. [PubMed]
  • Maruyama M, Shibuya H, Harada H, Hatakeyama M, Seiki M, Fujita T, Inoue J, Yoshida M, Taniguchi T. Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell. 1987 Jan 30;48(2):343–350. [PubMed]
  • McDougal JS, Mawle A, Cort SP, Nicholson JK, Cross GD, Scheppler-Campbell JA, Hicks D, Sligh J. Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T cell activation and expression of the T4 antigen. J Immunol. 1985 Nov;135(5):3151–3162. [PubMed]
  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. [PMC free article] [PubMed]
  • Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987 Apr 16;326(6114):711–713. [PubMed]
  • Nyborg JK, Dynan WS, Chen IS, Wachsman W. Binding of host-cell factors to DNA sequences in the long terminal repeat of human T-cell leukemia virus type I: implications for viral gene expression. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1457–1461. [PMC free article] [PubMed]
  • Quinn TC, Piot P, McCormick JB, Feinsod FM, Taelman H, Kapita B, Stevens W, Fauci AS. Serologic and immunologic studies in patients with AIDS in North America and Africa. The potential role of infectious agents as cofactors in human immunodeficiency virus infection. JAMA. 1987 May 15;257(19):2617–2621. [PubMed]
  • Rice NR, Simek SL, Dubois GC, Showalter SD, Gilden RV, Stephens RM. Expression of the bovine leukemia virus X region in virus-infected cells. J Virol. 1987 May;61(5):1577–1585. [PMC free article] [PubMed]
  • Rosen CA, Sodroski JG, Willems L, Kettmann R, Campbell K, Zaya R, Burny A, Haseltine WA. The 3' region of bovine leukemia virus genome encodes a trans-activator protein. EMBO J. 1986 Oct;5(10):2585–2589. [PMC free article] [PubMed]
  • Sagata N, Tsuzuku-Kawamura J, Nagayoshi-Aida M, Shimizu F, Imagawa K, Ikawa Y. Identification and some biochemical properties of the major XBL gene product of bovine leukemia virus. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7879–7883. [PMC free article] [PubMed]
  • Sagata N, Yasunaga T, Ogawa Y, Tsuzuku-Kawamura J, Ikawa Y. Bovine leukemia virus: unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4741–4745. [PMC free article] [PubMed]
  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. [PMC free article] [PubMed]
  • Schenborn ET, Mierendorf RC., Jr A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985 Sep 11;13(17):6223–6236. [PMC free article] [PubMed]
  • Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. [PMC free article] [PubMed]
  • Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705–716. [PubMed]
  • Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986 Dec 26;47(6):921–928. [PubMed]
  • Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC. Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science. 1987 Dec 11;238(4833):1575–1578. [PubMed]
  • Stock ND, Ferrer JF. Replicating C-type virus in phytohemagglutinin-treated buffy-coat cultures of bovine origin. J Natl Cancer Inst. 1972 Apr;48(4):985–996. [PubMed]
  • Tong-Starksen SE, Luciw PA, Peterlin BM. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6845–6849. [PMC free article] [PubMed]
  • Tsukiyama K, Onuma M, Izawa H. Effect of platelet-derived factor on expression of bovine leukemia virus genome. Arch Virol. 1987;96(1-2):89–96. [PubMed]
  • Yoshida M. Expression of the HTLV-1 genome and its association with a unique T-cell malignancy. Biochim Biophys Acta. 1987 Jul 8;907(2):145–161. [PubMed]
  • Yoshida M, Seiki M. Recent advances in the molecular biology of HTLV-1: trans-activation of viral and cellular genes. Annu Rev Immunol. 1987;5:541–559. [PubMed]
  • Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC. Long-term cultures of HTLV-III--infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science. 1986 Feb 21;231(4740):850–853. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...