Logo of compfungenJournal's HomeManuscript SubmissionAims and ScopeAuthor GuidelinesEditorial BoardHome
Comp Funct Genomics. 2004 Feb; 5(1): 17–38.
PMCID: PMC2447327

A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis


Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alexandre S, Paindavoine P, Hanocq-Quertier J, Paturiaux-Hanocq F, Tebabi P, Pays E. Families of adenylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol. 1996 May;77(2):173–182. [PubMed]
  • Alexandre S, Paindavoine P, Tebabi P, Pays A, Halleux S, Steinert M, Pays E. Differential expression of a family of putative adenylate/guanylate cyclase genes in Trypanosoma brucei. Mol Biochem Parasitol. 1990 Dec;43(2):279–288. [PubMed]
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. [PMC free article] [PubMed]
  • Appleman J Alex, Stewart Valley. Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX. J Bacteriol. 2003 Jan;185(1):89–97. [PMC free article] [PubMed]
  • Aravind L, Dixit VM, Koonin EV. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science. 2001 Feb 16;291(5507):1279–1284. [PubMed]
  • Aravind L, Koonin EV. DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 1999 Apr 1;27(7):1609–1618. [PMC free article] [PubMed]
  • Aravind L, Ponting CP. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett. 1999 Jul 1;176(1):111–116. [PubMed]
  • Bateman Alex, Birney Ewan, Cerruti Lorenzo, Durbin Richard, Etwiller Laurence, Eddy Sean R, Griffiths-Jones Sam, Howe Kevin L, Marshall Mhairi, Sonnhammer Erik L L. The Pfam protein families database. Nucleic Acids Res. 2002 Jan 1;30(1):276–280. [PMC free article] [PubMed]
  • Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002 May 9;417(6885):141–147. [PubMed]
  • Bentley Stephen D, Maiwald Matthias, Murphy Lee D, Pallen Mark J, Yeats Corin A, Dover Lynn G, Norbertczak Halina T, Besra Gurdyal S, Quail Michael A, Harris David E, et al. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet. 2003 Feb 22;361(9358):637–644. [PubMed]
  • Bieger B, Essen LO. Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J. 2001 Feb 1;20(3):433–445. [PMC free article] [PubMed]
  • Brosch R, Pym AS, Gordon SV, Cole ST. The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 2001 Sep;9(9):452–458. [PubMed]
  • Cases I, de Lorenzo V. Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol. 1998 Jun;1(3):303–310. [PubMed]
  • Cole Stewart T. Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology. 2002 Oct;148(Pt 10):2919–2928. [PubMed]
  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. [PubMed]
  • Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, et al. Massive gene decay in the leprosy bacillus. Nature. 2001 Feb 22;409(6823):1007–1011. [PubMed]
  • Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982 Sep 3;217(4563):948–950. [PubMed]
  • Cotta MA, Whitehead TR, Wheeler MB. Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d. FEMS Microbiol Lett. 1998 Jul 15;164(2):257–260. [PubMed]
  • Danchin A. Phylogeny of adenylyl cyclases. Adv Second Messenger Phosphoprotein Res. 1993;27:109–162. [PubMed]
  • Danchin A, Pidoux J, Krin E, Thompson CJ, Ullmann A. The adenylate cyclase catalytic domain of Streptomyces coelicolor is carboxy-terminal. FEMS Microbiol Lett. 1993 Dec 1;114(2):145–151. [PubMed]
  • Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol. 2000 Sep;279(3):F400–F416. [PubMed]
  • Drum Chester L, Yan Shui-Zhong, Bard Joel, Shen Yue-Quan, Lu Dan, Soelaiman Sandriyana, Grabarek Zenon, Bohm Andrew, Tang Wei-Jen. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature. 2002 Jan 24;415(6870):396–402. [PubMed]
  • Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002 Oct;184(19):5479–5490. [PMC free article] [PubMed]
  • Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett. 2001 Sep 11;203(1):11–21. [PubMed]
  • Guo YL, Seebacher T, Kurz U, Linder JU, Schultz JE. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J. 2001 Jul 16;20(14):3667–3675. [PMC free article] [PubMed]
  • Hannenhalli SS, Russell RB. Analysis and prediction of functional sub-types from protein sequence alignments. J Mol Biol. 2000 Oct 13;303(1):61–76. [PubMed]
  • Hoover DL, Friedlander AM, Rogers LC, Yoon IK, Warren RL, Cross AS. Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun. 1994 Oct;62(10):4432–4439. [PMC free article] [PubMed]
  • Horinouchi S, Kito M, Nishiyama M, Furuya K, Hong SK, Miyake K, Beppu T. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene. 1990 Oct 30;95(1):49–56. [PubMed]
  • Horinouchi S, Ohnishi Y, Kang DK. The A-factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. J Ind Microbiol Biotechnol. 2001 Sep;27(3):177–182. [PubMed]
  • Jaroszewski L, Rychlewski L, Reed JC, Godzik A. ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins. 2000 May 15;39(3):197–203. [PubMed]
  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998 Oct;23(10):403–405. [PubMed]
  • Kato-Maeda M, Rhee JT, Gingeras TR, Salamon H, Drenkow J, Smittipat N, Small PM. Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 2001 Apr;11(4):547–554. [PMC free article] [PubMed]
  • Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. [PMC free article] [PubMed]
  • Letunic Ivica, Goodstadt Leo, Dickens Nicholas J, Doerks Tobias, Schultz Joerg, Mott Richard, Ciccarelli Francesca, Copley Richard R, Ponting Chris P, Bork Peer. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002 Jan 1;30(1):242–244. [PMC free article] [PubMed]
  • Lowrie DB, Aber VR, Jackett PS. Phagosome-lysosome fusion and cyclic adenosine 3':5'-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J Gen Microbiol. 1979 Feb;110(2):431–441. [PubMed]
  • Lowrie DB, Jackett PS, Ratcliffe NA. Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature. 1975 Apr 17;254(5501):600–602. [PubMed]
  • Lynch TJ, Tallant EA, Cheung WY. Brevibacterium liquefaciens adenylate cyclase and its in vivo stimulation by pyruvate. J Bacteriol. 1975 Dec;124(3):1106–1112. [PMC free article] [PubMed]
  • McCue LA, McDonough KA, Lawrence CE. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res. 2000 Feb;10(2):204–219. [PubMed]
  • Mowbray SL, Sandgren MO. Chemotaxis receptors: a progress report on structure and function. J Struct Biol. 1998 Dec 15;124(2-3):257–275. [PubMed]
  • Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999 Jan;9(1):27–43. [PubMed]
  • Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000 Sep 8;302(1):205–217. [PubMed]
  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, et al. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. [PubMed]
  • Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol. 2001 Apr 25;114(1):1–16. [PubMed]
  • Peters EP, Wilderspin AF, Wood SP, Zvelebil MJ, Sezer O, Danchin A. A pyruvate-stimulated adenylate cyclase has a sequence related to the fes/fps oncogenes and to eukaryotic cyclases. Mol Microbiol. 1991 May;5(5):1175–1181. [PubMed]
  • Rocha CR, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 2001 Nov;12(11):3631–3643. [PMC free article] [PubMed]
  • Rolin S, Paindavoine P, Hanocq-Quertier J, Hanocq F, Claes Y, Le Ray D, Overath P, Pays E. Transient adenylate cyclase activation accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms. Mol Biochem Parasitol. 1993 Sep;61(1):115–125. [PubMed]
  • Schäffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF. IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics. 1999 Dec;15(12):1000–1011. [PubMed]
  • Shenoy Avinash R, Srinivasan N, Subramaniam M, Visweswariah Sandhya S. Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. FEBS Lett. 2003 Jun 19;545(2-3):253–259. [PubMed]
  • Shenoy Avinash R, Srinivasan N, Visweswariah Sandhya S. The ascent of nucleotide cyclases: conservation and evolution of a theme. J Biosci. 2002 Mar;27(2):85–91. [PubMed]
  • Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534–7539. [PMC free article] [PubMed]
  • Sismeiro O, Trotot P, Biville F, Vivares C, Danchin A. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J Bacteriol. 1998 Jul;180(13):3339–3344. [PMC free article] [PubMed]
  • Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol. 1998 Oct;30(1):33–46. [PubMed]
  • Tang WJ, Hurley JH. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol. 1998 Aug;54(2):231–240. [PubMed]
  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001 Jan 1;29(1):22–28. [PMC free article] [PubMed]
  • Taylor MC, Muhia DK, Baker DA, Mondragon A, Schaap PB, Kelly JM. Trypanosoma cruzi adenylyl cyclase is encoded by a complex multigene family. Mol Biochem Parasitol. 1999 Nov 30;104(2):205–217. [PubMed]
  • Téllez-Sosa Juan, Soberón Nora, Vega-Segura Alicia, Torres-Márquez María E, Cevallos Miguel A. The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J Bacteriol. 2002 Jul;184(13):3560–3568. [PMC free article] [PubMed]
  • Tesmer JJ, Sprang SR. The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol. 1998 Dec;8(6):713–719. [PubMed]
  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907–1916. [PubMed]
  • Tucker CL, Hurley JH, Miller TR, Hurley JB. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5993–5997. [PMC free article] [PubMed]
  • van der Biezen EA, Jones JD. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998 Mar 26;8(7):R226–R227. [PubMed]
  • Vissa VD, Brennan PJ. The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2001;2(8):REVIEWS1023–REVIEWS1023. [PMC free article] [PubMed]
  • Wedel B, Garbers D. The guanylyl cyclase family at Y2K. Annu Rev Physiol. 2001;63:215–233. [PubMed]
  • Weiss AA, Hewlett EL, Myers GA, Falkow S. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis. 1984 Aug;150(2):219–222. [PubMed]
  • Wirth JJ, Kierszenbaum F. Inhibitory action of elevated levels of adenosine-3':5' cyclic monophosphate on phagocytosis: effects on macrophage-Trypanosoma cruzi interaction. J Immunol. 1982 Dec;129(6):2759–2762. [PubMed]
  • Wolfgang Matthew C, Lee Vincent T, Gilmore Meghan E, Lory Stephen. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell. 2003 Feb;4(2):253–263. [PubMed]
  • Yeats Corin, Bentley Stephen, Bateman Alex. New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol. 2003 Feb 6;3:3–3. [PMC free article] [PubMed]
  • Yu Tin-Wein, Bai Linquan, Clade Dorothee, Hoffmann Dietmar, Toelzer Sabine, Trinh Khue Q, Xu Jun, Moss Steven J, Leistner Eckhard, Floss Heinz G. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7968–7973. [PMC free article] [PubMed]

Articles from Comparative and Functional Genomics are provided here courtesy of Hindawi Publishing Corporation


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Taxonomy
    Taxonomy records associated with the current articles through taxonomic information on related molecular database records (Nucleotide, Protein, Gene, SNP, Structure).
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...