• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of pnasPNASInfo for AuthorsSubscriptionsAboutThis Article
Proc Natl Acad Sci U S A. Oct 28, 2003; 100(22): 13064–13068.
Published online Oct 9, 2003. doi:  10.1073/pnas.1635110100
PMCID: PMC240745
Neuroscience

Olivo-cerebellar cluster-based universal control system

Abstract

The olivo-cerebellar network plays a key role in the organization of vertebrate motor control. The oscillatory properties of inferior olive (IO) neurons have been shown to provide timing signals for motor coordination in which spatio-temporal coherent oscillatory neuronal clusters control movement dynamics. Based on the neuronal connectivity and electrophysiology of the olivo-cerebellar network we have developed a general-purpose control approach, which we refer to as a universal control system (UCS), capable of dealing with a large number of actuator parameters in real time. In this UCS, the imposed goal and the resultant feedback from the actuators specify system properties. The goal is realized through implementing an architecture that can regulate a large number of parameters simultaneously by providing stimuli-modulated spatio-temporal cluster dynamics.


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...