• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Dec 1995; 59(4): 579–590.
PMCID: PMC239388

Conjugative transposons: an unusual and diverse set of integrated gene transfer elements.


Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.

Full Text

The Full Text of this article is available as a PDF (321K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ayoubi P, Kilic AO, Vijayakumar MN. Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol. 1991 Mar;173(5):1617–1622. [PMC free article] [PubMed]
  • Bannam TL, Crellin PK, Rood JI. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol. 1995 May;16(3):535–551. [PubMed]
  • Bedzyk LA, Shoemaker NB, Young KE, Salyers AA. Insertion and excision of Bacteroides conjugative chromosomal elements. J Bacteriol. 1992 Jan;174(1):166–172. [PMC free article] [PubMed]
  • Bertram J, Strätz M, Dürre P. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J Bacteriol. 1991 Jan;173(2):443–448. [PMC free article] [PubMed]
  • Bringel F, Van Alstine GL, Scott JR. Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J Bacteriol. 1992 Jun;174(12):4036–4041. [PMC free article] [PubMed]
  • Caillaud F, Courvalin P. Nucleotide sequence of the ends of the conjugative shuttle transposon Tn1545. Mol Gen Genet. 1987 Aug;209(1):110–115. [PubMed]
  • Campbell AM. Chromosomal insertion sites for phages and plasmids. J Bacteriol. 1992 Dec;174(23):7495–7499. [PMC free article] [PubMed]
  • Caparon MG, Scott JR. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell. 1989 Dec 22;59(6):1027–1034. [PubMed]
  • Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995 Jun;3(6):229–236. [PubMed]
  • Clewell DB, Gawron-Burke C. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu Rev Microbiol. 1986;40:635–659. [PubMed]
  • Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 1994 Jul;38(7):1447–1451. [PMC free article] [PubMed]
  • Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother. 1991 Jan;35(1):185–187. [PMC free article] [PubMed]
  • Fitzgerald GF, Clewell DB. A conjugative transposon (Tn919) in Streptococcus sanguis. Infect Immun. 1985 Feb;47(2):415–420. [PMC free article] [PubMed]
  • Flannagan SE, Clewell DB. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J Bacteriol. 1991 Nov;173(22):7136–7141. [PMC free article] [PubMed]
  • Flannagan SE, Zitzow LA, Su YA, Clewell DB. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid. 1994 Nov;32(3):350–354. [PubMed]
  • Franke AE, Clewell DB. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 1981 Jan;145(1):494–502. [PMC free article] [PubMed]
  • Gawron-Burke C, Clewell DB. A transposon in Streptococcus faecalis with fertility properties. Nature. 1982 Nov 18;300(5889):281–284. [PubMed]
  • Gawron-Burke C, Clewell DB. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 1984 Jul;159(1):214–221. [PMC free article] [PubMed]
  • Guiney DG, Bouic K. Detection of conjugal transfer systems in oral, black-pigmented Bacteroides spp. J Bacteriol. 1990 Jan;172(1):495–497. [PMC free article] [PubMed]
  • Halula M, Macrina FL. Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 2):S235–S242. [PubMed]
  • Hecht DW, Thompson JS, Malamy MH. Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5340–5344. [PMC free article] [PubMed]
  • Horaud T, Delbos F, de Cespédès G. Tn3702, a conjugative transposon in Enterococcus faecalis. FEMS Microbiol Lett. 1990 Oct;60(1-2):189–194. [PubMed]
  • Horn N, Swindell S, Dodd H, Gasson M. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 1991 Aug;228(1-2):129–135. [PubMed]
  • Hwang I, Cook DM, Farrand SK. A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol. 1995 Jan;177(2):449–458. [PMC free article] [PubMed]
  • Ike Y, Flannagan SE, Clewell DB. Hyperhemolytic phenomena associated with insertions of Tn916 into the hemolysin determinant of Enterococcus faecalis plasmid pAD1. J Bacteriol. 1992 Mar;174(6):1801–1809. [PMC free article] [PubMed]
  • Jaworski DD, Clewell DB. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J Bacteriol. 1994 Jun;176(11):3328–3335. [PMC free article] [PubMed]
  • Katz L, Brown DP, Donadio S. Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol Gen Genet. 1991 May;227(1):155–159. [PubMed]
  • Kiliç AO, Vijayakumar MN, al-Khaldi SF. Identification and nucleotide sequence analysis of a transfer-related region in the streptococcal conjugative transposon Tn5252. J Bacteriol. 1994 Aug;176(16):5145–5150. [PMC free article] [PubMed]
  • Knapp JS, Johnson SR, Zenilman JM, Roberts MC, Morse SA. High-level tetracycline resistance resulting from TetM in strains of Neisseria spp., Kingella denitrificans, and Eikenella corrodens. Antimicrob Agents Chemother. 1988 May;32(5):765–767. [PMC free article] [PubMed]
  • Le Bouguénec C, de Cespédès G, Horaud T. Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci. J Bacteriol. 1990 Feb;172(2):727–734. [PMC free article] [PubMed]
  • Lessl M, Lanka E. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell. 1994 May 6;77(3):321–324. [PubMed]
  • Li LY, Shoemaker NB, Salyers AA. Characterization of the mobilization region of a Bacteroides insertion element (NBU1) that is excised and transferred by Bacteroides conjugative transposons. J Bacteriol. 1993 Oct;175(20):6588–6598. [PMC free article] [PubMed]
  • Li LY, Shoemaker NB, Salyers AA. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol. 1995 Sep;177(17):4992–4999. [PMC free article] [PubMed]
  • Li LY, Shoemaker NB, Wang GR, Cole SP, Hashimoto MK, Wang J, Salyers AA. The mobilization regions of two integrated Bacteroides elements, NBU1 and NBU2, have only a single mobilization protein and may be on a cassette. J Bacteriol. 1995 Jul;177(14):3940–3945. [PMC free article] [PubMed]
  • Lu F, Churchward G. Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 1994 Apr 1;13(7):1541–1548. [PMC free article] [PubMed]
  • Lu F, Churchward G. Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J Bacteriol. 1995 Apr;177(8):1938–1946. [PMC free article] [PubMed]
  • Murphy CG, Malamy MH. Characterization of a "mobilization cassette" in transposon Tn4399 from Bacteroides fragilis. J Bacteriol. 1993 Sep;175(18):5814–5823. [PMC free article] [PubMed]
  • Nikolich MP, Hong G, Shoemaker NB, Salyers AA. Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Appl Environ Microbiol. 1994 Sep;60(9):3255–3260. [PMC free article] [PubMed]
  • Nikolich MP, Shoemaker NB, Salyers AA. A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob Agents Chemother. 1992 May;36(5):1005–1012. [PMC free article] [PubMed]
  • Nikolich MP, Shoemaker NB, Wang GR, Salyers AA. Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 1994 Nov;176(21):6606–6612. [PMC free article] [PubMed]
  • Norgren M, Scott JR. The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J Bacteriol. 1991 Jan;173(1):319–324. [PMC free article] [PubMed]
  • Nunes-Düby SE, Azaro MA, Landy A. Swapping DNA strands and sensing homology without branch migration in lambda site-specific recombination. Curr Biol. 1995 Feb 1;5(2):139–148. [PubMed]
  • Poyart C, Celli J, Trieu-Cuot P. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob Agents Chemother. 1995 Feb;39(2):500–506. [PMC free article] [PubMed]
  • Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 1989 Aug;8(8):2425–2433. [PMC free article] [PubMed]
  • Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P. The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol Microbiol. 1990 Sep;4(9):1513–1521. [PubMed]
  • Rauch PJ, De Vos WM. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 1992 Feb;174(4):1280–1287. [PMC free article] [PubMed]
  • Rauch PJ, de Vos WM. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 1994 Apr;176(8):2165–2171. [PMC free article] [PubMed]
  • Rice LB, Carias LL. Studies on excision of conjugative transposons in enterococci: evidence for joint sequences composed of strands with unequal numbers of nucleotides. Plasmid. 1994 May;31(3):312–316. [PubMed]
  • Roberts MC. Characterization of the Tet M determinants in urogenital and respiratory bacteria. Antimicrob Agents Chemother. 1990 Mar;34(3):476–478. [PMC free article] [PubMed]
  • Rudy CK, Scott JR. Length of the coupling sequence of Tn916. J Bacteriol. 1994 Jun;176(11):3386–3388. [PMC free article] [PubMed]
  • Salyers AA. Gene transfer in the mammalian intestinal tract. Curr Opin Biotechnol. 1993 Jun;4(3):294–298. [PubMed]
  • Scott JR. Sex and the single circle: conjugative transposition. J Bacteriol. 1992 Oct;174(19):6005–6010. [PMC free article] [PubMed]
  • Scott JR, Bringel F, Marra D, Van Alstine G, Rudy CK. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol Microbiol. 1994 Mar;11(6):1099–1108. [PubMed]
  • Scott JR, Kirchman PA, Caparon MG. An intermediate in transposition of the conjugative transposon Tn916. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4809–4813. [PMC free article] [PubMed]
  • Senghas E, Jones JM, Yamamoto M, Gawron-Burke C, Clewell DB. Genetic organization of the bacterial conjugative transposon Tn916. J Bacteriol. 1988 Jan;170(1):245–249. [PMC free article] [PubMed]
  • Shoemaker NB, Barber RD, Salyers AA. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol. 1989 Mar;171(3):1294–1302. [PMC free article] [PubMed]
  • Shoemaker NB, Getty C, Gardner JF, Salyers AA. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol. 1986 Mar;165(3):929–936. [PMC free article] [PubMed]
  • Shoemaker NB, Getty C, Guthrie EP, Salyers AA. Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J Bacteriol. 1986 Jun;166(3):959–965. [PMC free article] [PubMed]
  • Shoemaker NB, Salyers AA. Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal Bacteroides tetracycline resistance elements. J Bacteriol. 1988 Apr;170(4):1651–1657. [PMC free article] [PubMed]
  • Shoemaker NB, Salyers AA. A cryptic 65-kilobase-pair transposonlike element isolated from Bacteroides uniformis has homology with Bacteroides conjugal tetracycline resistance elements. J Bacteriol. 1990 Apr;172(4):1694–1702. [PMC free article] [PubMed]
  • Shoemaker NB, Smith MD, Guild WR. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus. Plasmid. 1980 Jan;3(1):80–87. [PubMed]
  • Shoemaker NB, Wang GR, Salyers AA. Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl Environ Microbiol. 1992 Apr;58(4):1313–1320. [PMC free article] [PubMed]
  • Shoemaker NB, Wang GR, Stevens AM, Salyers AA. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J Bacteriol. 1993 Oct;175(20):6578–6587. [PMC free article] [PubMed]
  • Showsh SA, Andrews RE., Jr Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid. 1992 Nov;28(3):213–224. [PubMed]
  • Smith CJ, Parker AC. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol. 1993 May;175(9):2682–2691. [PMC free article] [PubMed]
  • Speer BS, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992 Oct;5(4):387–399. [PMC free article] [PubMed]
  • Stevens AM, Sanders JM, Shoemaker NB, Salyers AA. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J Bacteriol. 1992 May;174(9):2935–2942. [PMC free article] [PubMed]
  • Stevens AM, Shoemaker NB, Li LY, Salyers AA. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol. 1993 Oct;175(19):6134–6141. [PMC free article] [PubMed]
  • Stevens AM, Shoemaker NB, Salyers AA. The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element. J Bacteriol. 1990 Aug;172(8):4271–4279. [PMC free article] [PubMed]
  • Storrs MJ, Poyart-Salmeron C, Trieu-Cuot P, Courvalin P. Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J Bacteriol. 1991 Jul;173(14):4347–4352. [PMC free article] [PubMed]
  • Su YA, Clewell DB. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 1993 Nov;30(3):234–250. [PubMed]
  • Su YA, He P, Clewell DB. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother. 1992 Apr;36(4):769–778. [PMC free article] [PubMed]
  • Swartley JS, McAllister CF, Hajjeh RA, Heinrich DW, Stephens DS. Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol Microbiol. 1993 Oct;10(2):299–310. [PubMed]
  • Torres OR, Korman RZ, Zahler SA, Dunny GM. The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet. 1991 Mar;225(3):395–400. [PubMed]
  • Trieu-Cuot P, Poyart-Salmeron C, Carlier C, Courvalin P. Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn 1545. Mol Microbiol. 1993 Apr;8(1):179–185. [PubMed]
  • Valentine PJ, Shoemaker NB, Salyers AA. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol. 1988 Mar;170(3):1319–1324. [PMC free article] [PubMed]
  • Vijayakumar MN, Ayalew S. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252. J Bacteriol. 1993 May;175(9):2713–2719. [PMC free article] [PubMed]
  • Waters VL, Guiney DG. Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol. 1993 Sep;9(6):1123–1130. [PubMed]
  • Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev. 1992 Mar;56(1):12–31. [PMC free article] [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...