Logo of microrevMicrobiol Mol Biol Rev ArchivePermissionsJournals.ASM.orgMMBR ArticleJournal InfoAuthorsReviewers
Microbiol Rev. Jun 1995; 59(2): 171–200.
PMCID: PMC239359

Bacteriocins of gram-positive bacteria.


In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.

Full Text

The Full Text of this article is available as a PDF (1000K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abee T, Klaenhammer TR, Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994 Mar;60(3):1006–1013. [PMC free article] [PubMed]
  • Allgaier H, Jung G, Werner RG, Schneider U, Zähner H. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. Eur J Biochem. 1986 Oct 1;160(1):9–22. [PubMed]
  • Allison GE, Fremaux C, Klaenhammer TR. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol. 1994 Apr;176(8):2235–2241. [PMC free article] [PubMed]
  • Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A. Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol. 1985 Jul 20;184(2):241–250. [PubMed]
  • Amemura M, Makino K, Shinagawa H, Nakata A. Nucleotide sequence of the phoM region of Escherichia coli: four open reading frames may constitute an operon. J Bacteriol. 1986 Oct;168(1):294–302. [PMC free article] [PubMed]
  • Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian KD, Götz F. Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem. 1992 Mar 15;204(3):1149–1154. [PubMed]
  • Axelsson L, Holck A, Birkeland SE, Aukrust T, Blom H. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol. 1993 Sep;59(9):2868–2875. [PMC free article] [PubMed]
  • Bailey FJ, Hurst A. Preparation of a highly active form of nisin from Streptococcus lactis. Can J Microbiol. 1971 Jan;17(1):61–67. [PubMed]
  • Banerjee S, Hansen JN. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem. 1988 Jul 5;263(19):9508–9514. [PubMed]
  • Benz R. Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol. 1988;42:359–393. [PubMed]
  • BERRIDGE NJ, NEWTON GGF, ABRAHAM EP. Purification and nature of the antibiotic nisin. Biochem J. 1952 Dec;52(4):529–535. [PMC free article] [PubMed]
  • Bhunia AK, Johnson MC, Ray B. Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol. 1988 Oct;65(4):261–268. [PubMed]
  • Bierbaum G, Sahl HG. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol. 1985 Apr;141(3):249–254. [PubMed]
  • Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 1987 Dec;169(12):5452–5458. [PMC free article] [PubMed]
  • Bierbaum G, Sahl HG. Lantibiotics--unusually modified bacteriocin-like peptides from gram-positive bacteria. Zentralbl Bakteriol. 1993 Feb;278(1):1–22. [PubMed]
  • Biswas SR, Ray P, Johnson MC, Ray B. Influence of Growth Conditions on the Production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl Environ Microbiol. 1991 Apr;57(4):1265–1267. [PMC free article] [PubMed]
  • Boulnois GJ, Paton JC, Mitchell TJ, Andrew PW. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae. Mol Microbiol. 1991 Nov;5(11):2611–2616. [PubMed]
  • Bradley DE. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. [PMC free article] [PubMed]
  • Bruno ME, Montville TJ. Common mechanistic action of bacteriocins from lactic Acid bacteria. Appl Environ Microbiol. 1993 Sep;59(9):3003–3010. [PMC free article] [PubMed]
  • Buchman GW, Banerjee S, Hansen JN. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J Biol Chem. 1988 Nov 5;263(31):16260–16266. [PubMed]
  • Bukhtiyarova M, Yang R, Ray B. Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain. Appl Environ Microbiol. 1994 Sep;60(9):3405–3408. [PMC free article] [PubMed]
  • Chikindas ML, García-Garcerá MJ, Driessen AJ, Ledeboer AM, Nissen-Meyer J, Nes IF, Abee T, Konings WN, Venema G. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol. 1993 Nov;59(11):3577–3584. [PMC free article] [PubMed]
  • Christensen DP, Hutkins RW. Collapse of the proton motive force in Listeria monocytogenes caused by a bacteriocin produced by Pediococcus acidilactici. Appl Environ Microbiol. 1992 Oct;58(10):3312–3315. [PMC free article] [PubMed]
  • Chung YJ, Hansen JN. Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J Bacteriol. 1992 Oct;174(20):6699–6702. [PMC free article] [PubMed]
  • Daeschel MA, Klaenhammer TR. Association of a 13.6-Megadalton Plasmid in Pediococcus pentosaceus with Bacteriocin Activity. Appl Environ Microbiol. 1985 Dec;50(6):1538–1541. [PMC free article] [PubMed]
  • Davey GP. Plasmid associated with diplococcin production in Streptococcus. Appl Environ Microbiol. 1984 Oct;48(4):895–896. [PMC free article] [PubMed]
  • Davies J. What are antibiotics? Archaic functions for modern activities. Mol Microbiol. 1990 Aug;4(8):1227–1232. [PubMed]
  • de Vos WM, Mulders JW, Siezen RJ, Hugenholtz J, Kuipers OP. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol. 1993 Jan;59(1):213–218. [PMC free article] [PubMed]
  • Dodd HM, Horn N, Gasson MJ. Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol. 1990 Mar;136(3):555–566. [PubMed]
  • Dufour A, Thuault D, Boulliou A, Bourgeois CM, Le Pennec JP. Plasmid-encoded determinants for bacteriocin production and immunity in a Lactococcus lactis strain and purification of the inhibitory peptide. J Gen Microbiol. 1991 Oct;137(10):2423–2429. [PubMed]
  • Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian KD. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol. 1992 Nov;58(11):3730–3743. [PMC free article] [PubMed]
  • Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian KD. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol. 1994 Mar;60(3):814–825. [PMC free article] [PubMed]
  • Farkas-Himsley H, Zhang YS, Yuan M, Musclow CE. Partially purified bacteriocin kills malignant cells by apoptosis: programmed cell death. Cell Mol Biol (Noisy-le-grand) 1992 Aug-Sep;38(5-6):643–651. [PubMed]
  • FREDERICQ P. Colicins. Annu Rev Microbiol. 1957;11:7–22. [PubMed]
  • FREDERICQ P. COLICINES ET AUTRES BACTERIOCINES. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1963;37:114–161. [PubMed]
  • Fremaux C, Ahn C, Klaenhammer TR. Molecular analysis of the lactacin F operon. Appl Environ Microbiol. 1993 Nov;59(11):3906–3915. [PMC free article] [PubMed]
  • Freund S, Jung G, Gutbrod O, Folkers G, Gibbons WA, Allgaier H, Werner R. The solution structure of the lantibiotic gallidermin. Biopolymers. 1991 May;31(6):803–811. [PubMed]
  • Gao FH, Abee T, Konings WN. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol. 1991 Aug;57(8):2164–2170. [PMC free article] [PubMed]
  • Garcerá MJ, Elferink MG, Driessen AJ, Konings WN. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 1993 Mar 1;212(2):417–422. [PubMed]
  • Garnier T, Cole ST. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J Bacteriol. 1986 Dec;168(3):1189–1196. [PMC free article] [PubMed]
  • Gonzalez CF, Kunka BS. Transfer of Sucrose-Fermenting Ability and Nisin Production Phenotype among Lactic Streptococci. Appl Environ Microbiol. 1985 Mar;49(3):627–633. [PMC free article] [PubMed]
  • Gonzalez CF, Kunka BS. Plasmid-Associated Bacteriocin Production and Sucrose Fermentation in Pediococcus acidilactici. Appl Environ Microbiol. 1987 Oct;53(10):2534–2538. [PMC free article] [PubMed]
  • Graham DC, McKay LL. Plasmid DNA in Strains of Pediococcus cerevisiae and Pediococcus pentosaceus. Appl Environ Microbiol. 1985 Aug;50(2):532–534. [PMC free article] [PubMed]
  • Gross E, Kiltz HH. The number and nature of , -unsaturated amino acids in subtilin. Biochem Biophys Res Commun. 1973 Jan 23;50(2):559–565. [PubMed]
  • Gross E, Morell JL. The structure of nisin. J Am Chem Soc. 1971 Sep 8;93(18):4634–4635. [PubMed]
  • Gutowski-Eckel Z, Klein C, Siegers K, Bohm K, Hammelmann M, Entian KD. Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol. 1994 Jan;60(1):1–11. [PMC free article] [PubMed]
  • Hansen JN. Antibiotics synthesized by posttranslational modification. Annu Rev Microbiol. 1993;47:535–564. [PubMed]
  • Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991 Dec;173(23):7491–7500. [PMC free article] [PubMed]
  • Héchard Y, Dérijard B, Letellier F, Cenatiempo Y. Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol. 1992 Dec;138(12):2725–2731. [PubMed]
  • Henderson JT, Chopko AL, van Wassenaar PD. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys. 1992 May 15;295(1):5–12. [PubMed]
  • Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol. 1992 Dec;138(12):2715–2720. [PubMed]
  • Holck AL, Axelsson L, Hühne K, Kröckel L. Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol Lett. 1994 Jan 15;115(2-3):143–149. [PubMed]
  • Holck AL, Axelsson L, Schillinger U. Purification and cloning of piscicolin 61, a bacteriocin from Carnobacterium piscicola LV61. Curr Microbiol. 1994 Aug;29(2):63–68. [PubMed]
  • Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991 Jun;173(12):3879–3887. [PMC free article] [PubMed]
  • Horn N, Swindell S, Dodd H, Gasson M. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 1991 Aug;228(1-2):129–135. [PubMed]
  • Hynes WL, Ferretti JJ, Tagg JR. Cloning of the gene encoding Streptococcin A-FF22, a novel lantibiotic produced by Streptococcus pyogenes, and determination of its nucleotide sequence. Appl Environ Microbiol. 1993 Jun;59(6):1969–1971. [PMC free article] [PubMed]
  • Ingram LC. Synthesis of the antibiotic nisin: formation of lanthionine and beta-methyl-lanthionine. Biochim Biophys Acta. 1969 Jun 17;184(1):216–219. [PubMed]
  • Ingram L. A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta. 1970 Nov 12;224(1):263–265. [PubMed]
  • Jack R, Benz R, Tagg J, Sahl HG. The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22. Eur J Biochem. 1994 Jan 15;219(1-2):699–705. [PubMed]
  • Jack RW, Carne A, Metzger J, Stefanović S, Sahl HG, Jung G, Tagg J. Elucidation of the structure of SA-FF22, a lanthionine-containing antibacterial peptide produced by Streptococcus pyogenes strain FF22. Eur J Biochem. 1994 Mar 1;220(2):455–462. [PubMed]
  • Jack RW, Tagg JR. Factors affecting production of the group A streptococcus bacteriocin SA-FF22. J Med Microbiol. 1992 Feb;36(2):132–138. [PubMed]
  • JACOB F, LWOFF A, SIMINOVITCH A, WOLLMAN E. Définition de quelques termes relatifs a la lysogénie. Ann Inst Pasteur (Paris) 1953 Jan;84(1):222–224. [PubMed]
  • Jiménez-Díaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC. Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation. Appl Environ Microbiol. 1993 May;59(5):1416–1424. [PMC free article] [PubMed]
  • Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 1986 Aug;167(2):439–446. [PMC free article] [PubMed]
  • Joerger MC, Klaenhammer TR. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol. 1990 Nov;172(11):6339–6347. [PMC free article] [PubMed]
  • Kaletta C, Entian KD. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol. 1989 Mar;171(3):1597–1601. [PMC free article] [PubMed]
  • Kaletta C, Entian KD, Kellner R, Jung G, Reis M, Sahl HG. Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch Microbiol. 1989;152(1):16–19. [PubMed]
  • Kozar W, Rajchert-Trzpil M, Dobrzański WT. The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. J Gen Microbiol. 1974 Aug;83(2):295–302. [PubMed]
  • Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian KD, Götz F. Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem. 1988 Oct 15;177(1):53–59. [PubMed]
  • Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. [PubMed]
  • Klein C, Kaletta C, Entian KD. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol. 1993 Jan;59(1):296–303. [PMC free article] [PubMed]
  • Klein C, Kaletta C, Schnell N, Entian KD. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol. 1992 Jan;58(1):132–142. [PMC free article] [PubMed]
  • Kleinkauf H, von Döhren H. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem. 1990 Aug 28;192(1):1–15. [PubMed]
  • Kolter R, Moreno F. Genetics of ribosomally synthesized peptide antibiotics. Annu Rev Microbiol. 1992;46:141–163. [PubMed]
  • Kordel M, Benz R, Sahl HG. Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol. 1988 Jan;170(1):84–88. [PMC free article] [PubMed]
  • Kordel M, Schüller F, Sahl HG. Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes. FEBS Lett. 1989 Feb 13;244(1):99–102. [PubMed]
  • Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem. 1993 Aug 15;216(1):281–291. [PubMed]
  • Kupke T, Stevanović S, Sahl HG, Götz F. Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol. 1992 Aug;174(16):5354–5361. [PMC free article] [PubMed]
  • Lämmler C. Typing of Actinomyces pyogenes by its production and susceptibility to bacteriocin-like inhibitors. Zentralbl Bakteriol. 1990 Jun;273(2):173–178. [PubMed]
  • Lewus CB, Sun S, Montville TJ. Production of an Amylase-Sensitive Bacteriocin by an Atypical Leuconostoc paramesenteroides Strain. Appl Environ Microbiol. 1992 Jan;58(1):143–149. [PMC free article] [PubMed]
  • Linnett PE, Strominger JL. Additional antibiotic inhibitors of peptidoglycan synthesis. Antimicrob Agents Chemother. 1973 Sep;4(3):231–236. [PMC free article] [PubMed]
  • Liu W, Hansen JN. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl Environ Microbiol. 1990 Aug;56(8):2551–2558. [PMC free article] [PubMed]
  • Liu W, Hansen JN. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J Biol Chem. 1992 Dec 15;267(35):25078–25085. [PubMed]
  • Nieto Lozano JC, Meyer JN, Sletten K, Peláz C, Nes IF. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol. 1992 Sep;138(9):1985–1990. [PubMed]
  • Maftah A, Renault D, Vignoles C, Héchard Y, Bressollier P, Ratinaud MH, Cenatiempo Y, Julien R. Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. J Bacteriol. 1993 May;175(10):3232–3235. [PMC free article] [PubMed]
  • Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. [PMC free article] [PubMed]
  • Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vandenbergh PA. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol. 1992 Aug;58(8):2360–2367. [PMC free article] [PubMed]
  • Morris SL, Walsh RC, Hansen JN. Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J Biol Chem. 1984 Nov 10;259(21):13590–13594. [PubMed]
  • Motlagh A, Bukhtiyarova M, Ray B. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett Appl Microbiol. 1994 Jun;18(6):305–312. [PubMed]
  • Motlagh AM, Bhunia AK, Szostek F, Hansen TR, Johnson MC, Ray B. Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Lett Appl Microbiol. 1992 Aug;15(2):45–48. [PubMed]
  • Mulders JW, Boerrigter IJ, Rollema HS, Siezen RJ, de Vos WM. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem. 1991 Nov 1;201(3):581–584. [PubMed]
  • Muriana PM, Klaenhammer TR. Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactobacillus spp. J Bacteriol. 1991 Mar;173(5):1779–1788. [PMC free article] [PubMed]
  • Neve H, Geis A, Teuber M. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci. J Bacteriol. 1984 Mar;157(3):833–838. [PMC free article] [PubMed]
  • Nishio C, Komura S, Kurahashi K. Peptide antibiotic subtilin is synthesized via precursor proteins. Biochem Biophys Res Commun. 1983 Oct 31;116(2):751–758. [PubMed]
  • Nissen-Meyer J, Håvarstein LS, Holo H, Sletten K, Nes IF. Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol. 1993 Jul;139(7):1503–1509. [PubMed]
  • Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 1992 Sep;174(17):5686–5692. [PMC free article] [PubMed]
  • Nissen-Meyer J, Larsen AG, Sletten K, Daeschel M, Nes IF. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol. 1993 Sep;139(9):1973–1978. [PubMed]
  • Palmer DE, Mierke DF, Pattaroni C, Goodman M, Wakamiya T, Fukase K, Kitazawa M, Fujita H, Shiba T. Interactive NMR and computer simulation studies of lanthionine-ring structures. Biopolymers. 1989 Jan;28(1):397–408. [PubMed]
  • Parker MW, Tucker AD, Tsernoglou D, Pattus F. Insights into membrane insertion based on studies of colicins. Trends Biochem Sci. 1990 Apr;15(4):126–129. [PubMed]
  • Peschel A, Augustin J, Kupke T, Stevanovic S, Götz F. Regulation of epidermin biosynthetic genes by EpiQ. Mol Microbiol. 1993 Jul;9(1):31–39. [PubMed]
  • Piard JC, Kuipers OP, Rollema HS, Desmazeaud MJ, de Vos WM. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J Biol Chem. 1993 Aug 5;268(22):16361–16368. [PubMed]
  • Pore RS. Microbial toxins, their functional role and phylogenetic validity. Biosystems. 1978 Apr;10(1-2):189–198. [PubMed]
  • Pucci MJ, Vedamuthu ER, Kunka BS, Vandenbergh PA. Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Appl Environ Microbiol. 1988 Oct;54(10):2349–2353. [PMC free article] [PubMed]
  • Pugsley AP. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol Sci. 1984 Oct;1(7):168–175. [PubMed]
  • Pugsley AP. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol Sci. 1984 Nov;1(8):203–205. [PubMed]
  • Quadri LE, Sailer M, Roy KL, Vederas JC, Stiles ME. Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J Biol Chem. 1994 Apr 22;269(16):12204–12211. [PubMed]
  • Raccach M, McGrath R, Daftarian H. Antibiosis of some lactic acid bacteria including Lactobacillus acidophilus toward Listeria monocytogenes. Int J Food Microbiol. 1989 Aug;9(1):25–32. [PubMed]
  • RAMSEIER HR. [The effect of nisin on Clostridium butyricum Prazm]. Arch Mikrobiol. 1960;37:57–94. [PubMed]
  • Rauch PJ, Beerthuyzen MM, de Vos WM. Nucleotide sequence of IS904 from Lactococcus lactis subsp. lactis strain NIZO R5. Nucleic Acids Res. 1990 Jul 25;18(14):4253–4254. [PMC free article] [PubMed]
  • Sung MW, Johnson JT, Van Dongen G, Whiteside TL. Protective effects of interferon-gamma on squamous-cell carcinoma of head and neck targets in antibody-dependent cellular cytotoxicity mediated by human natural killer cells. Int J Cancer. 1996 May 3;66(3):393–399. [PubMed]
  • Reis M, Eschbach-Bludau M, Iglesias-Wind MI, Kupke T, Sahl HG. Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl Environ Microbiol. 1994 Aug;60(8):2876–2883. [PMC free article] [PubMed]
  • Reisinger P, Seidel H, Tschesche H, Hammes WP. The effect of nisin on murein synthesis. Arch Microbiol. 1980 Oct;127(3):187–193. [PubMed]
  • Rince A, Dufour A, Le Pogam S, Thuault D, Bourgeois CM, Le Pennec JP. Cloning, expression, and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1994 May;60(5):1652–1657. [PMC free article] [PubMed]
  • Rogers LA. THE INHIBITING EFFECT OF STREPTOCOCCUS LACTIS ON LACTOBACILLUS BULGARICUS. J Bacteriol. 1928 Nov;16(5):321–325. [PMC free article] [PubMed]
  • Ross KF, Ronson CW, Tagg JR. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol. 1993 Jul;59(7):2014–2021. [PMC free article] [PubMed]
  • Ruhr E, Sahl HG. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. [PMC free article] [PubMed]
  • Sahl HG. Influence of the staphylococcinlike peptide Pep 5 on membrane potential of bacterial cells and cytoplasmic membrane vesicles. J Bacteriol. 1985 May;162(2):833–836. [PMC free article] [PubMed]
  • Sahl HG. Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from gram-positive bacteria. Appl Environ Microbiol. 1994 Feb;60(2):752–755. [PMC free article] [PubMed]
  • Sahl HG, Brandis H. Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol. 1981 Dec;127(2):377–384. [PubMed]
  • Sahl HG, Brandis H. Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Zentralbl Bakteriol Mikrobiol Hyg A. 1982 Jun;252(2):166–175. [PubMed]
  • Sahl HG, Hahn C, Brandis H. Interaction of the staphylococcin-like peptide Pep 5 with cell walls and isolated cell wall components of Gram-positive bacteria. Zentralbl Bakteriol Mikrobiol Hyg A. 1985 Oct;260(2):197–205. [PubMed]
  • Sahl HG, Kordel M, Benz R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol. 1987;149(2):120–124. [PubMed]
  • Sano Y, Kobayashi M, Kageyama M. Functional domains of S-type pyocins deduced from chimeric molecules. J Bacteriol. 1993 Oct;175(19):6179–6185. [PMC free article] [PubMed]
  • Scherwitz KM, Baldwin KA, McKay LL. Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Appl Environ Microbiol. 1983 May;45(5):1506–1512. [PMC free article] [PubMed]
  • Schillinger U, Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol. 1989 Aug;55(8):1901–1906. [PMC free article] [PubMed]
  • Schnell N, Engelke G, Augustin J, Rosenstein R, Ungermann V, Götz F, Entian KD. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur J Biochem. 1992 Feb 15;204(1):57–68. [PubMed]
  • Schnell N, Entian KD, Götz F, Hörner T, Kellner R, Jung G. Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol Lett. 1989 Apr;49(2-3):263–267. [PubMed]
  • Schnell N, Entian KD, Schneider U, Götz F, Zähner H, Kellner R, Jung G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature. 1988 May 19;333(6170):276–278. [PubMed]
  • Schüller F, Benz R, Sahl HG. The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes. Eur J Biochem. 1989 Jun 1;182(1):181–186. [PubMed]
  • Schved F, Lalazar A, Henis Y, Juven BJ. Purification, partial characterization and plasmid-linkage of pediocin SJ-1, a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol. 1993 Jan;74(1):67–77. [PubMed]
  • Scott JC, Sahl HG, Carne A, Tagg JR. Lantibiotic-mediated anti-lactobacillus activity of a vaginal Staphylococcus aureus isolate. FEMS Microbiol Lett. 1992 May 15;72(1):97–102. [PubMed]
  • Siezen RJ, de Vos WM, Leunissen JA, Dijkstra BW. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. [PubMed]
  • Simpson WJ, Tagg JR. M-type 57 group A streptococcus bacteriocin. Can J Microbiol. 1983 Oct;29(10):1445–1451. [PubMed]
  • Song HY, Cramer WA. Membrane topography of ColE1 gene products: the immunity protein. J Bacteriol. 1991 May;173(9):2935–2943. [PMC free article] [PubMed]
  • Steele JL, McKay LL. Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl Environ Microbiol. 1986 Jan;51(1):57–64. [PMC free article] [PubMed]
  • Steen MT, Chung YJ, Hansen JN. Characterization of the nisin gene as part of a polycistronic operon in the chromosome of Lactococcus lactis ATCC 11454. Appl Environ Microbiol. 1991 Apr;57(4):1181–1188. [PMC free article] [PubMed]
  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol. 1991 Dec;57(12):3613–3615. [PMC free article] [PubMed]
  • Stoddard GW, Petzel JP, van Belkum MJ, Kok J, McKay LL. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol. 1992 Jun;58(6):1952–1961. [PMC free article] [PubMed]
  • Tagg JR, Bannister LV. "Fingerprinting" beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol. 1979 Nov;12(4):397–411. [PubMed]
  • Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. [PMC free article] [PubMed]
  • Tagg JR, McGiven AR. Some possible autoimmune mechanisms in rheumatic carditis. Lancet. 1972 Sep 30;2(7779):686–688. [PubMed]
  • Tagg JR, Skjold S, Wannamaker LW. Transduction of bacteriocin determinants in group A streptococci. J Exp Med. 1976 Jun 1;143(6):1540–1544. [PMC free article] [PubMed]
  • Tagg JR, Wannamaker LW. Genetic basis of streptococcin A-FF22 production. Antimicrob Agents Chemother. 1976 Aug;10(2):299–306. [PMC free article] [PubMed]
  • Tagg JR, Wannamaker LW. Streptococcin A-FF22: nisin-like antibiotic substance produced by a group A streptococcus. Antimicrob Agents Chemother. 1978 Jul;14(1):31–39. [PMC free article] [PubMed]
  • Tahara T, Kanatani K, Yoshida K, Miura H, Sakamoto M, Oshimura M. Purification and some properties of acidocin 8912, a novel bacteriocin produced by Lactobacillus acidophilus TK8912. Biosci Biotechnol Biochem. 1992 Aug;56(8):1212–1215. [PubMed]
  • Tichaczek PS, Vogel RF, Hammes WP. Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch Microbiol. 1993;160(4):279–283. [PubMed]
  • Tichaczek PS, Vogel RF, Hammes WP. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology. 1994 Feb;140(Pt 2):361–367. [PubMed]
  • Tsai HJ, Sandine WE. Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl Environ Microbiol. 1987 Feb;53(2):352–357. [PMC free article] [PubMed]
  • Upreti GC, Hinsdill RD. Isolation and characterization of a bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother. 1973 Oct;4(4):487–494. [PMC free article] [PubMed]
  • Upreti GC, Hinsdill RD. Production and mode of action of lactocin 27: bacteriocin from a homofermentative Lactobacillus. Antimicrob Agents Chemother. 1975 Feb;7(2):139–145. [PMC free article] [PubMed]
  • van Belkum MJ, Hayema BJ, Geis A, Kok J, Venema G. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol. 1989 May;55(5):1187–1191. [PMC free article] [PubMed]
  • van Belkum MJ, Hayema BJ, Jeeninga RE, Kok J, Venema G. Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol. 1991 Feb;57(2):492–498. [PMC free article] [PubMed]
  • van Belkum MJ, Kok J, Venema G. Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl Environ Microbiol. 1992 Feb;58(2):572–577. [PMC free article] [PubMed]
  • van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991 Dec;173(24):7934–7941. [PMC free article] [PubMed]
  • van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos WM. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol. 1993 May;175(9):2578–2588. [PMC free article] [PubMed]
  • van der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, de Vos WM. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem. 1994 Feb 4;269(5):3555–3562. [PubMed]
  • Van de Ven FJ, Van den Hooven HW, Konings RN, Hilbers CW. NMR studies of lantibiotics. The structure of nisin in aqueous solution. Eur J Biochem. 1991 Dec 18;202(3):1181–1188. [PubMed]
  • Vaughan EE, Daly C, Fitzgerald GF. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 1992 Oct;73(4):299–308. [PubMed]
  • Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN, Venema G. Mode of Action of Lactococcin B, a Thiol-Activated Bacteriocin from Lactococcus lactis. Appl Environ Microbiol. 1993 Apr;59(4):1041–1048. [PMC free article] [PubMed]
  • Vogel H, Nilsson L, Rigler R, Meder S, Boheim G, Beck W, Kurth HH, Jung G. Structural fluctuations between two conformational states of a transmembrane helical peptide are related to its channel-forming properties in planar lipid membranes. Eur J Biochem. 1993 Mar 1;212(2):305–313. [PubMed]
  • Von Tersch MA, Carlton BC. Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol. 1983 Aug;155(2):866–871. [PMC free article] [PubMed]
  • Weil HP, Beck-Sickinger AG, Metzger J, Stevanovic S, Jung G, Josten M, Sahl HG. Biosynthesis of the lantibiotic Pep5. Isolation and characterization of a prepeptide containing dehydroamino acids. Eur J Biochem. 1990 Nov 26;194(1):217–223. [PubMed]
  • Worobo RW, Henkel T, Sailer M, Roy KL, Vederas JC, Stiles ME. Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology. 1994 Mar;140(Pt 3):517–526. [PubMed]
  • Yang R, Johnson MC, Ray B. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl Environ Microbiol. 1992 Oct;58(10):3355–3359. [PMC free article] [PubMed]
  • Zajdel JK, Ceglowski P, Dobrazański WT. Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Appl Environ Microbiol. 1985 Apr;49(4):969–974. [PMC free article] [PubMed]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...