• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. Sep 1993; 67(9): 5321–5327.
PMCID: PMC237931

Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51.

Abstract

A battery of 19 synthetic peptides was used to characterize efficient neutralizing and helper T-cell epitopes on the bovine leukemia virus (BLV) external envelope glycoprotein gp51. Four of the antipeptide antisera raised in rabbits inhibited the formation of BLV-induced syncytia; these antisera are directed against peptides 64-73, 98-117, and 177-192. Only antisera directed against the 177-192 region also neutralized vesicular stomatitis virus-BLV pseudotypes. This study clearly demonstrates that neutralizing properties can be observed with antibodies raised to regions undescribed so far and included in both the amino-terminal and central parts of the antigen. In addition, some helper T-cell determinants were defined from gp51-immunized mice and from BLV-infected cattle. Although none of the peptides tested behaved as a universal helper T-cell epitope, peptide 98-117 stimulated T-cell proliferation from BALB/c mice and from three infected cows, while peptide 169-188 strongly stimulated T-cell proliferation from one infected cow. Further experiments performed with three peptides overlapping the 169-188 region (177-192, 179-192, 181-192) demonstrated the particular relevance of residue(s) P-177 and/or D-178 in the helper T-cell epitope. These data should assist in the design of an efficient subunit vaccine against BLV infection that contains peptides possessing both B-neutralizing and helper T-cell determinants.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ban J, Portetelle D, Altaner C, Horion B, Milan D, Krchnak V, Burny A, Kettmann R. Isolation and characterization of a 2.3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukemia virus cell receptor. J Virol. 1993 Feb;67(2):1050–1057. [PMC free article] [PubMed]
  • Bruck C, Mathot S, Portetelle D, Berte C, Franssen JD, Herion P, Burny A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology. 1982 Oct 30;122(2):342–352. [PubMed]
  • Bruck C, Portetelle D, Burny A, Zavada J. Topographical analysis by monoclonal antibodies of BLV-gp51 epitopes involved in viral functions. Virology. 1982 Oct 30;122(2):353–362. [PubMed]
  • Bruck C, Rensonnet N, Portetelle D, Cleuter Y, Mammerickx M, Burny A, Mamoun R, Guillemain B, van der Maaten MJ, Ghysdael J. Biologically active epitopes of bovine leukemia virus glycoprotein gp51: their dependence on protein glycosylation and genetic variability. Virology. 1984 Jul 15;136(1):20–31. [PubMed]
  • Callebaut I, Burny A, Krchnák V, Gras-Masse H, Wathelet B, Portetelle D. Use of synthetic peptides to map sequential epitopes recognized by monoclonal antibodies on the bovine leukemia virus external glycoprotein. Virology. 1991 Nov;185(1):48–55. [PubMed]
  • Callebaut I, Burny A, Portetelle D. Iodoacetamide treatment of bovine leukemia virus glycoprotein gp51 enhances the western blotting reactivity of anti-peptide antibodies. FEBS Lett. 1991 Nov 4;292(1-2):148–150. [PubMed]
  • Dalgleish AG, Chanh TC, Kennedy RC, Kanda P, Clapham PR, Weiss RA. Neutralization of diverse HIV-1 strains by monoclonal antibodies raised against a gp41 synthetic peptide. Virology. 1988 Jul;165(1):209–215. [PubMed]
  • Fischinger PJ, Blevins CS, Nomura S. Simple, quantitative assay for both xenotropic murine leukemia and ecotropic feline leukemia viruses. J Virol. 1974 Jul;14(1):177–179. [PMC free article] [PubMed]
  • Gatei MH, Naif HM, Kumar S, Boyle DB, Daniel RC, Good MF, Lavin MF. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: correlation of protection with CD4 T-cell response to gp51 peptide 51-70. J Virol. 1993 Apr;67(4):1803–1810. [PMC free article] [PubMed]
  • Kutubuddin M, Simons J, Chow M. Identification of T-helper epitopes in the VP1 capsid protein of poliovirus. J Virol. 1992 May;66(5):3042–3047. [PMC free article] [PubMed]
  • Mamoun RZ, Morisson M, Rebeyrotte N, Busetta B, Couez D, Kettmann R, Hospital M, Guillemain B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol. 1990 Sep;64(9):4180–4188. [PMC free article] [PubMed]
  • Matsushita S, Robert-Guroff M, Trepel J, Cossman J, Mitsuya H, Broder S. Human monoclonal antibody directed against an envelope glycoprotein of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2672–2676. [PMC free article] [PubMed]
  • Palker TJ, Riggs ER, Spragion DE, Muir AJ, Scearce RM, Randall RR, McAdams MW, McKnight A, Clapham PR, Weiss RA, et al. Mapping of homologous, amino-terminal neutralizing regions of human T-cell lymphotropic virus type I and II gp46 envelope glycoproteins. J Virol. 1992 Oct;66(10):5879–5889. [PMC free article] [PubMed]
  • Ohishi K, Suzuki H, Yamamoto T, Maruyama T, Miki K, Ikawa Y, Numakunai S, Okada K, Ohshima K, Sugimoto M. Protective immunity against bovine leukaemia virus (BLV) induced in carrier sheep by inoculation with a vaccinia virus-BLV env recombinant: association with cell-mediated immunity. J Gen Virol. 1991 Aug;72(Pt 8):1887–1892. [PubMed]
  • Portetelle D, Bruck C, Mammerickx M, Burny A. In animals infected by bovine leukemia virus (BLV) antibodies to envelope glycoprotein gp51 are directed against the carbohydrate moiety. Virology. 1980 Aug;105(1):223–233. [PubMed]
  • Portetelle D, Couez D, Bruck C, Kettmann R, Mammerickx M, Van der Maaten M, Brasseur R, Burny A. Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology. 1989 Mar;169(1):27–33. [PubMed]
  • Portetelle D, Dandoy C, Burny A, Zavada J, Siakkou H, Gras-Masse H, Drobecq H, Tartar A. Synthetic peptides approach to identification of epitopes on bovine leukemia virus envelope glycoprotein gp51. Virology. 1989 Mar;169(1):34–41. [PubMed]
  • Portetelle D, Limbach K, Burny A, Mammerickx M, Desmettre P, Riviere M, Zavada J, Paoletti E. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine. 1991 Mar;9(3):194–200. [PubMed]
  • Ralston S, Hoeprich P, Akita R. Identification and synthesis of the epitope for a human monoclonal antibody which can neutralize human T-cell leukemia/lymphotropic virus type I. J Biol Chem. 1989 Oct 5;264(28):16343–16346. [PubMed]
  • Ruegg CL, Monell CR, Strand M. Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p15E required for inhibition of lymphoproliferation and its similarity to gp21 of human T-lymphotropic virus types I and II. J Virol. 1989 Aug;63(8):3250–3256. [PMC free article] [PubMed]
  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985 Feb;82(3):677–681. [PMC free article] [PubMed]
  • Thomas EK, Weber JN, McClure J, Clapham PR, Singhal MC, Shriver MK, Weiss RA. Neutralizing monoclonal antibodies to the AIDS virus. AIDS. 1988 Feb;2(1):25–29. [PubMed]
  • Vonèche V, Portetelle D, Kettmann R, Willems L, Limbach K, Paoletti E, Ruysschaert JM, Burny A, Brasseur R. Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3810–3814. [PMC free article] [PubMed]
  • Zandomeni RO, Carrera-Zandomeni M, Esteban E, Donawick W, Ferrer JF. Induction and inhibition of bovine leukaemia virus expression in naturally infected cells. J Gen Virol. 1992 Aug;73(Pt 8):1915–1924. [PubMed]
  • Závada J, Cerný L, Altstein AD, Závadová Z. Pseudotype particles of vesicular stomatitis virus with surface antigens of bovine leukaemia virus--VSV (BLV) -- as a sensitive probe for detecting antibodies in the sera of spontaneously infected cattle. Acta Virol. 1978 Mar;22(2):91–96. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...