• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. Nov 1994; 68(11): 7374–7385.
PMCID: PMC237180

Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state.


Epstein-Barr virus (EBV) can display different forms of latent infection in B-cell lines in vitro; however, the types of infection normally established by the virus in vivo remain largely unexplored. Here we have approached this question by analyzing the types of viral RNAs present in mononuclear cells freshly isolated from the blood of 14 infectious mononucleosis patients undergoing primary EBV infection and 6 long-term virus carriers. Reverse transcription-PCR amplifications were carried out with a panel of oligonucleotide primers and probes which specifically detect (i) the EBER1 RNA common to all forms of latency, (ii) transcripts either from the Cp and Wp promoters generating all six nuclear antigen (EBNA1, -2, -3A, -3B, -3C, -LP) mRNAs or from the Fp promoter generating a uniquely spliced EBNA1 mRNA, (iii) the latent membrane protein (LMP1 and 2A) mRNAs, and (iv) the BZLF1 mRNA, an immediate-early marker of lytic cycle. Viral transcription in infectious mononucleosis mononuclear cells (and in the B-cell-enriched fraction) regularly included the full spectrum of latent RNAs seen during EBV-induced B-cell growth transformation in vitro, i.e., EBER1, Cp/Wp-initiated EBNA mRNAs, and LMP1/LMP2 mRNAs, in the absence of lytic BZLF1 transcripts. In addition, transcripts with the splice pattern of Fp-initiated EBNA1 mRNA, hitherto seen only in vivo in certain EBV-positive tumors, were frequently detected. In long-term virus carriers, the mononuclear cells were again positive for latent (EBER1) and negative for lytic (BZLF1) markers; Cp/Wp-initiated RNAs were not detected in these samples, but in several individuals it was possible to amplify both Fp-initiated EBNA1 mRNA and LMP2A mRNA signals. We suggest (i) that primary infection is associated with a transient virus-driven expansion of the infected B-cell pool through a program of virus gene expression like that seen in in vitro-transformed cells and (ii) that long-term virus carriage is associated with a switch from Cp/Wp to Fp usage and thus to a more restricted form of latent protein expression that may render the infected cells less susceptible to recognition by the virus-specific cytotoxic T-cell response.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Séguin C, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. [PubMed]
  • Biggin M, Bodescot M, Perricaudet M, Farrell P. Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol. 1987 Oct;61(10):3120–3132. [PMC free article] [PubMed]
  • Brooks L, Yao QY, Rickinson AB, Young LS. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 1992 May;66(5):2689–2697. [PMC free article] [PubMed]
  • Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993 Jun;67(6):3182–3190. [PMC free article] [PubMed]
  • Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 1992 May;66(5):3257–3262. [PMC free article] [PubMed]
  • Deacon EM, Pallesen G, Niedobitek G, Crocker J, Brooks L, Rickinson AB, Young LS. Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993 Feb 1;177(2):339–349. [PMC free article] [PubMed]
  • Fåhraeus R, Fu HL, Ernberg I, Finke J, Rowe M, Klein G, Falk K, Nilsson E, Yadav M, Busson P, et al. Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer. 1988 Sep 15;42(3):329–338. [PubMed]
  • Gilligan K, Sato H, Rajadurai P, Busson P, Young L, Rickinson A, Tursz T, Raab-Traub N. Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol. 1990 Oct;64(10):4948–4956. [PMC free article] [PubMed]
  • Gratama JW, Oosterveer MA, Zwaan FE, Lepoutre J, Klein G, Ernberg I. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8693–8696. [PMC free article] [PubMed]
  • Greenspan JS, Greenspan D, Lennette ET, Abrams DI, Conant MA, Petersen V, Freese UK. Replication of Epstein-Barr virus within the epithelial cells of oral "hairy" leukoplakia, an AIDS-associated lesion. N Engl J Med. 1985 Dec 19;313(25):1564–1571. [PubMed]
  • Gregory CD, Rowe M, Rickinson AB. Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line. J Gen Virol. 1990 Jul;71(Pt 7):1481–1495. [PubMed]
  • Hitt MM, Allday MJ, Hara T, Karran L, Jones MD, Busson P, Tursz T, Ernberg I, Griffin BE. EBV gene expression in an NPC-related tumour. EMBO J. 1989 Sep;8(9):2639–2651. [PMC free article] [PubMed]
  • Howe JG, Steitz JA. Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9006–9010. [PMC free article] [PubMed]
  • Hudson GS, Farrell PJ, Barrell BG. Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95-8. J Virol. 1985 Feb;53(2):528–535. [PMC free article] [PubMed]
  • Karran L, Gao Y, Smith PR, Griffin BE. Expression of a family of complementary-strand transcripts in Epstein-Barr virus-infected cells. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8058–8062. [PMC free article] [PubMed]
  • Katsuki T, Hinuma Y, Saito T, Yamamoto J, Hirashima Y, Sudoh H, Deguchi M, Motokawa M. Simultaneous presence of EBNA-positive and colony-forming cells in peripheral blood of patients with infectious mononucleosis. Int J Cancer. 1979 Jun 15;23(6):746–750. [PubMed]
  • Kerr BM, Lear AL, Rowe M, Croom-Carter D, Young LS, Rookes SM, Gallimore PH, Rickinson AB. Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: cell phenotype dependence of virus promoter usage. Virology. 1992 Mar;187(1):189–201. [PubMed]
  • Khanna R, Burrows SR, Kurilla MG, Jacob CA, Misko IS, Sculley TB, Kieff E, Moss DJ. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med. 1992 Jul 1;176(1):169–176. [PMC free article] [PubMed]
  • Klein G, Svedmyr E, Jondal M, Persson PO. EBV-determined nuclear antigen (EBNA)-positive cells in the peripheral blood of infectious mononucleosis patients. Int J Cancer. 1976 Jan 15;17(1):21–26. [PubMed]
  • Laux G, Perricaudet M, Farrell PJ. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 1988 Mar;7(3):769–774. [PMC free article] [PubMed]
  • Lear AL, Rowe M, Kurilla MG, Lee S, Henderson S, Kieff E, Rickinson AB. The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J Virol. 1992 Dec;66(12):7461–7468. [PMC free article] [PubMed]
  • Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1981 Feb;78(2):805–809. [PMC free article] [PubMed]
  • Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):772–776. [PMC free article] [PubMed]
  • Moss DJ, Rickinson AB, Pope JH. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. Int J Cancer. 1978 Dec;22(6):662–668. [PubMed]
  • Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, Kieff E, Rickinson AB. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med. 1992 Jul 1;176(1):157–168. [PMC free article] [PubMed]
  • Nilsson K, Klein G, Henle W, Henle G. The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int J Cancer. 1971 Nov 15;8(3):443–450. [PubMed]
  • Qu L, Rowe DT. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. [PMC free article] [PubMed]
  • Rickinson AB, Epstein MA, Crawford DH. Absence of infectious Epstein-Barr virus in blood in acute infectious mononucleosis. Nature. 1975 Nov 20;258(5532):236–236. [PubMed]
  • Rickinson AB, Finerty S, Epstein MA. Mechanism of the establishment of Epstein-Barr virus genome-containing lymphoid cell lines from infectious mononucleosis patients: studies with phosphonoacetate. Int J Cancer. 1977 Dec 15;20(6):861–868. [PubMed]
  • Rickinson AB, Moss DJ, Pope JH, Ahlberg N. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. IV. Development of T-cell memory in convalescent infectious mononucleosis patients. Int J Cancer. 1980 Jan 15;25(1):59–65. [PubMed]
  • Robinson JE, Smith D, Niederman J. Plasmacytic differentiation of circulating Epstein-Barr virus-infected B lymphocytes during acute infectious mononucleosis. J Exp Med. 1981 Feb 1;153(2):235–244. [PMC free article] [PubMed]
  • Rocchi G, Felici A, Ragona G, Heinz A. Quantitative evaluation of Epstein-Barr-virus-infected mononuclear peripheral blood leukocytes in infectious mononucleosis. N Engl J Med. 1977 Jan 20;296(3):132–134. [PubMed]
  • Rogers RP, Woisetschlaeger M, Speck SH. Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO J. 1990 Jul;9(7):2273–2277. [PMC free article] [PubMed]
  • Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol. 1992 Jan;66(1):122–131. [PMC free article] [PubMed]
  • Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, Rupani H, Rickinson AB. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 1987 Sep;6(9):2743–2751. [PMC free article] [PubMed]
  • Sample J, Brooks L, Sample C, Young L, Rowe M, Gregory C, Rickinson A, Kieff E. Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6343–6347. [PMC free article] [PubMed]
  • Sample J, Kieff E. Transcription of the Epstein-Barr virus genome during latency in growth-transformed lymphocytes. J Virol. 1990 Apr;64(4):1667–1674. [PMC free article] [PubMed]
  • Sample J, Liebowitz D, Kieff E. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 1989 Feb;63(2):933–937. [PMC free article] [PubMed]
  • Schaefer BC, Woisetschlaeger M, Strominger JL, Speck SH. Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently infected lymphocytes. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6550–6554. [PMC free article] [PubMed]
  • Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984 May 10;310(19):1225–1230. [PubMed]
  • Smith PR, Griffin BE. Differential expression of Epstein Barr viral transcripts for two proteins (TP1 and LMP) in lymphocyte and epithelial cells. Nucleic Acids Res. 1991 May 11;19(9):2435–2440. [PMC free article] [PubMed]
  • Smith PR, Griffin BE. Transcription of the Epstein-Barr virus gene EBNA-1 from different promoters in nasopharyngeal carcinoma and B-lymphoblastoid cells. J Virol. 1992 Feb;66(2):706–714. [PMC free article] [PubMed]
  • Strang G, Rickinson AB. Multiple HLA class I-dependent cytotoxicities constitute the "non-HLA-restricted" response in infectious mononucleosis. Eur J Immunol. 1987 Jul;17(7):1007–1013. [PubMed]
  • Svedmyr E, Ernberg I, Seeley J, Weiland O, Masucci G, Tsukuda K, Szigeti R, Masucci MG, Blomogren H, Berthold W. Virologic, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious mononucleosis. Clin Immunol Immunopathol. 1984 Mar;30(3):437–450. [PubMed]
  • Svedmyr E, Jondal M. Cytotoxic effector cells specific for B Cell lines transformed by Epstein-Barr virus are present in patients with infectious mononucleosis. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1622–1626. [PMC free article] [PubMed]
  • Woisetschlaeger M, Strominger JL, Speck SH. Mutually exclusive use of viral promoters in Epstein-Barr virus latently infected lymphocytes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6498–6502. [PMC free article] [PubMed]
  • Woisetschlaeger M, Yandava CN, Furmanski LA, Strominger JL, Speck SH. Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1725–1729. [PMC free article] [PubMed]
  • Yao QY, Czarnecka H, Rickinson AB. Spontaneous outgrowth of Epstein-Barr virus-positive B-cell lines from circulating human B cells of different buoyant densities. Int J Cancer. 1991 May 10;48(2):253–257. [PubMed]
  • Yao QY, Ogan P, Rowe M, Wood M, Rickinson AB. Epstein-Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int J Cancer. 1989 Jan 15;43(1):67–71. [PubMed]
  • Yao QY, Rickinson AB, Epstein MA. A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer. 1985 Jan 15;35(1):35–42. [PubMed]
  • Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 313(6005):812–815. [PubMed]
  • Young LS, Dawson CW, Clark D, Rupani H, Busson P, Tursz T, Johnson A, Rickinson AB. Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol. 1988 May;69(Pt 5):1051–1065. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...