• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plosonePLoS OneView this ArticleSubmit to PLoSGet E-mail AlertsContact UsPublic Library of Science (PLoS)
PLoS ONE. 2008; 3(5): e2143.
Published online May 14, 2008. doi:  10.1371/journal.pone.0002143
PMCID: PMC2366059

Telomere Attrition Due to Infection

Maria G. Masucci, Editor

Abstract

Background

Telomeres–the terminal caps of chromosomes–become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms. Several lines of evidence support this hypothesis, including observational findings that people exposed to infectious diseases have shorter telomeres. Experimental tests are still needed, however, to distinguish whether infectious diseases actually cause telomere attrition or whether telomere attrition increases susceptibility to infection. Experiments are also needed to determine whether telomere erosion reduces longevity.

Methodology/Principal Findings

We experimentally tested whether repeated exposure to an infectious agent, Salmonella enterica, causes telomere attrition in wild-derived house mice (Mus musculus musculus). We repeatedly infected mice with a genetically diverse cocktail of five different S. enterica strains over seven months, and compared changes in telomere length with sham-infected sibling controls. We measured changes in telomere length of white blood cells (WBC) after five infections using a real-time PCR method. Our results show that repeated Salmonella infections cause telomere attrition in WBCs, and particularly for males, which appeared less disease resistant than females. Interestingly, we also found that individuals having long WBC telomeres at early age were relatively disease resistant during later life. Finally, we found evidence that more rapid telomere attrition increases mortality risk, although this trend was not significant.

Conclusions/Significance

Our results indicate that infectious diseases can cause telomere attrition, and support the idea that telomere length could provide a molecular biomarker for assessing exposure and ability to cope with infectious diseases.


Articles from PLoS ONE are provided here courtesy of Public Library of Science
PubReader format: click here to try

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links