• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Dec 1997; 17(12): 6815–6821.
PMCID: PMC232537

Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation.


The functions of basic helix-loop-helix (bHLH) transcription factors in activating differentiation-linked gene expression and in inducing G1 cell cycle arrest are negatively regulated by members of the Id family of HLH proteins. These bHLH antagonists are induced during a mitogenic signalling response, and they function by sequestering their bHLH targets in inactive heterodimers that are unable to bind to specific gene regulatory (E box) sequences. Recently, cyclin E-Cdk2- and cyclin A-Cdk2-dependent phosphorylation of a single conserved serine residue (Ser5) in Id2 has been shown to occur during late G1-to-S phase transition of the cell cycle, and this neutralizes the function of Id2 in abrogating E-box-dependent bHLH homo- or heterodimer complex formation in vitro (E. Hara, M. Hall, and G. Peters, EMBO J. 16:332-342, 1997). We now show that an analogous cell-cycle-regulated phosphorylation of Id3 alters the specificity of Id3 for abrogating both E-box-dependent bHLH homo- or heterodimer complex formation in vitro and E-box-dependent reporter gene function in vivo. Furthermore, compared with wild-type Id3, an Id3 Asp5 mutant (mimicking phosphorylation) is unable to promote cell cycle S phase entry in transfected fibroblasts, whereas an Id3 Ala5 mutant (ablating phosphorylation) displays an activity significantly greater than that of wild-type Id3 protein. Cdk2-dependent phosphorylation therefore provides a switch during late G1-to-S phase that both nullifies an early G1 cell cycle regulatory function of Id3 and modulates its target bHLH specificity. These data also demonstrate that the ability of Id3 to promote cell cycle S phase entry is not simply a function of its ability to modulate bHLH heterodimer-dependent gene expression and establish a biologically important mechanism through which Cdk2 and Id-bHLH functions are integrated in the coordination of cell proliferation and differentiation.

Full Text

The Full Text of this article is available as a PDF (565K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Atherton GT, Travers H, Deed R, Norton JD. Regulation of cell differentiation in C2C12 myoblasts by the Id3 helix-loop-helix protein. Cell Growth Differ. 1996 Aug;7(8):1059–1066. [PubMed]
  • Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994 Dec 2;79(5):885–892. [PubMed]
  • Baker SJ, Reddy EP. B cell differentiation: role of E2A and Pax5/BSAP transcription factors. Oncogene. 1995 Aug 3;11(3):413–426. [PubMed]
  • Barone MV, Pepperkok R, Peverali FA, Philipson L. Id proteins control growth induction in mammalian cells. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4985–4988. [PMC free article] [PubMed]
  • Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol. 1996 Dec;8(6):805–814. [PubMed]
  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. [PubMed]
  • Crescenzi M, Fleming TP, Lassar AB, Weintraub H, Aaronson SA. MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8442–8446. [PMC free article] [PubMed]
  • Deed RW, Armitage S, Norton JD. Nuclear localization and regulation of Id protein through an E protein-mediated chaperone mechanism. J Biol Chem. 1996 Sep 27;271(39):23603–23606. [PubMed]
  • Deed RW, Bianchi SM, Atherton GT, Johnston D, Santibanez-Koref M, Murphy JJ, Norton JD. An immediate early human gene encodes an Id-like helix-loop-helix protein and is regulated by protein kinase C activation in diverse cell types. Oncogene. 1993 Mar;8(3):599–607. [PubMed]
  • Desprez PY, Hara E, Bissell MJ, Campisi J. Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1. Mol Cell Biol. 1995 Jun;15(6):3398–3404. [PMC free article] [PubMed]
  • Evan GI, Brown L, Whyte M, Harrington E. Apoptosis and the cell cycle. Curr Opin Cell Biol. 1995 Dec;7(6):825–834. [PubMed]
  • Hara E, Hall M, Peters G. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 1997 Jan 15;16(2):332–342. [PMC free article] [PubMed]
  • Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, Okayama H, Oda K. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem. 1994 Jan 21;269(3):2139–2145. [PubMed]
  • Henthorn P, Kiledjian M, Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science. 1990 Jan 26;247(4941):467–470. [PubMed]
  • Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 1994 Jun 1;8(11):1270–1284. [PubMed]
  • Jacks T, Weinberg RA. Cell-cycle control and its watchman. Nature. 1996 Jun 20;381(6584):643–644. [PubMed]
  • Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992 Aug;6(8):1466–1479. [PubMed]
  • Kadesch T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ. 1993 Jan;4(1):49–55. [PubMed]
  • Kamb A. Cell-cycle regulators and cancer. Trends Genet. 1995 Apr;11(4):136–140. [PubMed]
  • Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993 Mar;7(3):331–342. [PubMed]
  • Lam EW, La Thangue NB. DP and E2F proteins: coordinating transcription with cell cycle progression. Curr Opin Cell Biol. 1994 Dec;6(6):859–866. [PubMed]
  • Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. [PubMed]
  • Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995 May 12;268(5212):836–844. [PubMed]
  • Littlewood TD, Evan GI. Transcription factors 2: helix-loop-helix. Protein Profile. 1995;2(6):621–702. [PubMed]
  • Loveys DA, Streiff MB, Kato GJ. E2A basic-helix-loop-helix transcription factors are negatively regulated by serum growth factors and by the Id3 protein. Nucleic Acids Res. 1996 Jul 15;24(14):2813–2820. [PMC free article] [PubMed]
  • Mitsui K, Shirakata M, Paterson BM. Phosphorylation inhibits the DNA-binding activity of MyoD homodimers but not MyoD-E12 heterodimers. J Biol Chem. 1993 Nov 15;268(32):24415–24420. [PubMed]
  • Müller R, Mumberg D, Lucibello FC. Signals and genes in the control of cell-cycle progression. Biochim Biophys Acta. 1993 Aug 23;1155(2):151–179. [PubMed]
  • Murphy JJ, Norton JD. Cell-type-specific early response gene expression during plasmacytoid differentiation of human B lymphocytic leukemia cells. Biochim Biophys Acta. 1990 Jul 30;1049(3):261–271. [PubMed]
  • Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta. 1994 Jun 21;1218(2):129–135. [PubMed]
  • Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989 Aug 11;58(3):537–544. [PubMed]
  • Olson EN. MyoD family: a paradigm for development? Genes Dev. 1990 Sep;4(9):1454–1461. [PubMed]
  • Peverali FA, Ramqvist T, Saffrich R, Pepperkok R, Barone MV, Philipson L. Regulation of G1 progression by E2A and Id helix-loop-helix proteins. EMBO J. 1994 Sep 15;13(18):4291–4301. [PMC free article] [PubMed]
  • Phillips SE. Built by association: structure and function of helix-loop-helix DNA-binding proteins. Structure. 1994 Jan 15;2(1):1–4. [PubMed]
  • Robb L, Begley CG. The helix-loop-helix gene SCL: implicated in T-cell acute lymphoblastic leukaemia and in normal haematopoietic development. Int J Biochem Cell Biol. 1996 Jun;28(6):609–618. [PubMed]
  • Rudnicki MA, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays. 1995 Mar;17(3):203–209. [PubMed]
  • Shoji W, Yamamoto T, Obinata M. The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells. J Biol Chem. 1994 Feb 18;269(7):5078–5084. [PubMed]
  • Sloan SR, Shen CP, McCarrick-Walmsley R, Kadesch T. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol Cell Biol. 1996 Dec;16(12):6900–6908. [PMC free article] [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Sorrentino V, Pepperkok R, Davis RL, Ansorge W, Philipson L. Cell proliferation inhibited by MyoD1 independently of myogenic differentiation. Nature. 1990 Jun 28;345(6278):813–815. [PubMed]
  • Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991 Nov;11(11):5603–5611. [PMC free article] [PubMed]
  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. [PubMed]
  • Wibley J, Deed R, Jasiok M, Douglas K, Norton J. A homology model of the Id-3 helix-loop-helix domain as a basis for structure-function predictions. Biochim Biophys Acta. 1996 May 23;1294(2):138–146. [PubMed]
  • Zhuang Y, Cheng P, Weintraub H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol. 1996 Jun;16(6):2898–2905. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...