• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Sep 1997; 17(9): 5521–5529.
PMCID: PMC232400

The Drosophila bifocal gene encodes a novel protein which colocalizes with actin and is necessary for photoreceptor morphogenesis.


Photoreceptor cells of the Drosophila compound eye begin to develop specialized membrane foldings at the apical surface in midpupation. The microvillar structure ultimately forms the rhabdomere, an actin-rich light-gathering organelle with a characteristic shape and morphology. In a P-element transposition screen, we isolated mutations in a gene, bifocal (bif), which is required for the development of normal rhabdomeres. The morphological defects seen in bif mutant animals, in which the distinct contact domains established by the newly formed rhabdomeres are abnormal, first become apparent during midpupal development. The later defects seen in the mutant adult R cells are more dramatic, with the rhabdomeres enlarged, elongated, and frequently split. bif encodes a novel putative protein of 1063 amino acids which is expressed in the embryo and the larval eye imaginal disc in a pattern identical to that of F actin. During pupal development, Bif localizes to the base of the filamentous actin associated with the forming rhabdomeres along one side of the differentiating R cells. On the basis of its subcellular localization and loss-of-function phenotype, we discuss possible roles of Bif in photoreceptor morphogenesis.

Full Text

The Full Text of this article is available as a PDF (993K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arikawa K, Hicks JL, Williams DS. Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol. 1990 Jun;110(6):1993–1998. [PMC free article] [PubMed]
  • Bahri SM, Chia W. DPhK-gamma, a putative Drosophila kinase with homology to vertebrate phosphorylase kinase gamma subunits: molecular characterisation of the gene and phenotypic analysis of loss of function mutants. Mol Gen Genet. 1994 Dec 1;245(5):588–597. [PubMed]
  • Brown NH, Kafatos FC. Functional cDNA libraries from Drosophila embryos. J Mol Biol. 1988 Sep 20;203(2):425–437. [PubMed]
  • Cagan RL, Ready DF. The emergence of order in the Drosophila pupal retina. Dev Biol. 1989 Dec;136(2):346–362. [PubMed]
  • Detwiler C, MacIntyre R. A genetic and developmental analysis of an acid deoxyribonuclease in Drosophila melanogaster. Biochem Genet. 1978 Dec;16(11-12):1113–1134. [PubMed]
  • Drenckhahn D, Dermietzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol. 1988 Sep;107(3):1037–1048. [PMC free article] [PubMed]
  • Elkins T, Zinn K, McAllister L, Hoffmann FM, Goodman CS. Genetic analysis of a Drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell. 1990 Feb 23;60(4):565–575. [PubMed]
  • Frei E, Bopp D, Burri M, Baumgartner S, Edström JE, Noll M. Isolation and structural analysis of the extra sex combs gene of Drosophila. Cold Spring Harb Symp Quant Biol. 1985;50:127–134. [PubMed]
  • Fuchs R. MacPattern: protein pattern searching on the Apple Macintosh. Comput Appl Biosci. 1991 Jan;7(1):105–106. [PubMed]
  • Hicks JL, Liu X, Williams DS. Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton. 1996;35(4):367–379. [PubMed]
  • Karr TL, Alberts BM. Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol. 1986 Apr;102(4):1494–1509. [PMC free article] [PubMed]
  • Levis R, Hazelrigg T, Rubin GM. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. [PubMed]
  • Longley RL, Jr, Ready DF. Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol. 1995 Oct;171(2):415–433. [PubMed]
  • Luna EJ, Hitt AL. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. [PubMed]
  • Mooseker MS. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1:209–241. [PubMed]
  • Paro R, Goldberg ML, Gehring WJ. Molecular analysis of large transposable elements carrying the white locus of Drosophila melanogaster. EMBO J. 1983;2(6):853–860. [PMC free article] [PubMed]
  • Ready DF, Hanson TE, Benzer S. Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol. 1976 Oct 15;53(2):217–240. [PubMed]
  • Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. [PMC free article] [PubMed]
  • Shu SY, Ju G, Fan LZ. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett. 1988 Feb 29;85(2):169–171. [PubMed]
  • Snow PM, Bieber AJ, Goodman CS. Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell. 1989 Oct 20;59(2):313–323. [PubMed]
  • Steele FR, Washburn T, Rieger R, O'Tousa JE. Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell. 1992 May 15;69(4):669–676. [PubMed]
  • Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992 Feb 7;68(3):561–572. [PubMed]
  • Tian SS, Tsoulfas P, Zinn K. Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell. 1991 Nov 15;67(4):675–685. [PubMed]
  • Tomlinson A, Ready DF. Cell fate in the Drosophila ommatidium. Dev Biol. 1987 Sep;123(1):264–275. [PubMed]
  • Van Vactor D, Jr, Krantz DE, Reinke R, Zipursky SL. Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell. 1988 Jan 29;52(2):281–290. [PubMed]
  • Warn RM, Magrath R. F-actin distribution during the cellularization of the Drosophila embryo visualized with FL-phalloidin. Exp Cell Res. 1983 Jan;143(1):103–114. [PubMed]
  • Warn RM, Robert-Nicoud M. F-actin organization during the cellularization of the Drosophila embryo as revealed with a confocal laser scanning microscope. J Cell Sci. 1990 May;96(Pt 1):35–42. [PubMed]
  • Yang XH, Seow KT, Bahri SM, Oon SH, Chia W. Two Drosophila receptor-like tyrosine phosphatase genes are expressed in a subset of developing axons and pioneer neurons in the embryonic CNS. Cell. 1991 Nov 15;67(4):661–673. [PubMed]
  • Yang Y, Ballinger D. Mutations in calphotin, the gene encoding a Drosophila photoreceptor cell-specific calcium-binding protein, reveal roles in cellular morphogenesis and survival. Genetics. 1994 Oct;138(2):413–421. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...