• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Aug 1997; 17(8): 4801–4810.
PMCID: PMC232332

Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture.

Abstract

Using differential display analysis, we compared the expression of RNA in v-mos-transformed cells and their flat revertant and isolated a novel gene, drm (down-regulated in mos-transformed cells), whose expression is down-regulated in parental v-mos-transformed cells but which is expressed at a high level in the revertant and normal rat fibroblasts (REF-1 cells). Analysis of different oncogene-transformed cells revealed that drm gene expression was also suppressed in REF-1 cells transformed by v-ras, v-src, v-raf, and v-fos. The drm cDNA contains a 184-amino-acid-protein-encoding open reading frame which shows no significant homologies to known genes in DNA databases. Polyclonal antibodies raised against drm peptide detect a protein with the predicted size of 20.7 kDa in normal cells and under nonpermissive conditions in cells conditionally transformed by v-mos but not in parental v-mos-transformed cells. Northern analysis of normal adult tissues shows that drm is expressed as a 4.4-kb message in a tissue-specific manner, with high expression in the brain, spleen, kidney, and testis and little or no expression in the heart, liver, and skeletal muscle. In situ hybridization analysis in adult rat tissue reveals good correlation with this pattern and indicates that drm mRNA is most highly expressed in nondividing and terminally differentiated cells, such as neurons, type 1 lung cells, and goblet cells. Transfection of a drug-selectable drm expression vector dramatically reduced the efficiency of colony formation in REF-1 and CHO cells, and the drm-transfected REF-1 survivors expressed low or nondetectable levels of exogenous drm mRNA. The toxic effects of drm can be overcome by cotransfection with constructs expressing oncogenic ras; furthermore, cells expressing high levels of drm and conditionally transformed with mos-expressing Moloney murine sarcoma virus rapidly undergo apoptosis when shifted to the nonpermissive temperature. Taken together, our data suggest that cells expressing high levels of drm undergo apoptotic death in the absence of oncogene-induced transformation and that drm represents a novel gene with potential roles in cell growth control or viability and tissue-specific differentiation.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Athanasiou M, Mavrothalassitis GJ, Yuan CC, Blair DG. The Gag-Myb-Ets fusion oncogene alters the apoptotic response and growth factor dependence of interleukin-3 dependent murine cells. Oncogene. 1996 Jan 18;12(2):337–344. [PubMed]
  • Barnes JL, Milani S. In situ hybridization in the study of the kidney and renal diseases. Semin Nephrol. 1995 Jan;15(1):9–28. [PubMed]
  • Blair DG, Hull MA, Finch EA. The isolation and preliminary characterization of temperature-sensitive transformation mutants of Moloney sarcoma virus. Virology. 1979 Jun;95(2):303–316. [PubMed]
  • Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature. 1996 Aug 15;382(6592):595–601. [PubMed]
  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell. 1994 Oct 21;79(2):341–351. [PubMed]
  • Brody JS, Williams MC. Pulmonary alveolar epithelial cell differentiation. Annu Rev Physiol. 1992;54:351–371. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Contente S, Kenyon K, Rimoldi D, Friedman RM. Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science. 1990 Aug 17;249(4970):796–798. [PubMed]
  • Denhardt DT. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. [PubMed]
  • Enomoto H, Ozaki T, Takahashi E, Nomura N, Tabata S, Takahashi H, Ohnuma N, Tanabe M, Iwai J, Yoshida H, et al. Identification of human DAN gene, mapping to the putative neuroblastoma tumor suppressor locus. Oncogene. 1994 Oct;9(10):2785–2791. [PubMed]
  • Gillet G, Guerin M, Trembleau A, Brun G. A Bcl-2-related gene is activated in avian cells transformed by the Rous sarcoma virus. EMBO J. 1995 Apr 3;14(7):1372–1381. [PMC free article] [PubMed]
  • Glück U, Kwiatkowski DJ, Ben-Ze'ev A. Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with alpha-actinin cDNA. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):383–387. [PMC free article] [PubMed]
  • Gordon JI, Hermiston ML. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr Opin Cell Biol. 1994 Dec;6(6):795–803. [PubMed]
  • Gross-Bellard M, Oudet P, Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. [PubMed]
  • Gum JR, Jr, Hicks JW, Toribara NW, Rothe EM, Lagace RE, Kim YS. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed]
  • Hall PA, Coates PJ, Ansari B, Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci. 1994 Dec;107(Pt 12):3569–3577. [PubMed]
  • Harada H, Kitagawa M, Tanaka N, Yamamoto H, Harada K, Ishihara M, Taniguchi T. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993 Feb 12;259(5097):971–974. [PubMed]
  • Houle B, Rochette-Egly C, Bradley WE. Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):985–989. [PMC free article] [PubMed]
  • Katzav S, Martin-Zanca D, Barbacid M. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 1989 Aug;8(8):2283–2290. [PMC free article] [PubMed]
  • Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. [PMC free article] [PubMed]
  • Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. [PubMed]
  • Levine AJ. The tumor suppressor genes. Annu Rev Biochem. 1993;62:623–651. [PubMed]
  • Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. [PubMed]
  • Lin X, Nelson PJ, Frankfort B, Tombler E, Johnson R, Gelman IH. Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by src and ras. Mol Cell Biol. 1995 May;15(5):2754–2762. [PMC free article] [PubMed]
  • Nguyen M, Branton PE, Walton PA, Oltvai ZN, Korsmeyer SJ, Shore GC. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem. 1994 Jun 17;269(24):16521–16524. [PubMed]
  • Ozaki T, Sakiyama S. Molecular cloning and characterization of a cDNA showing negative regulation in v-src-transformed 3Y1 rat fibroblasts. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2593–2597. [PMC free article] [PubMed]
  • Ozaki T, Sakiyama S. Tumor-suppressive activity of N03 gene product in v-src-transformed rat 3Y1 fibroblasts. Cancer Res. 1994 Feb 1;54(3):646–648. [PubMed]
  • Ozaki T, Nakamura Y, Enomoto H, Hirose M, Sakiyama S. Overexpression of DAN gene product in normal rat fibroblasts causes a retardation of the entry into the S phase. Cancer Res. 1995 Feb 15;55(4):895–900. [PubMed]
  • Prasad GL, Fuldner RA, Cooper HL. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7039–7043. [PMC free article] [PubMed]
  • Preisig PA, Franch HA. Renal epithelial cell hyperplasia and hypertrophy. Semin Nephrol. 1995 Jul;15(4):327–340. [PubMed]
  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7742–7746. [PMC free article] [PubMed]
  • Sager R. Tumor suppressor genes: the puzzle and the promise. Science. 1989 Dec 15;246(4936):1406–1412. [PubMed]
  • Sanger F. Determination of nucleotide sequences in DNA. Science. 1981 Dec 11;214(4526):1205–1210. [PubMed]
  • Shih C, Weinberg RA. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell. 1982 May;29(1):161–169. [PubMed]
  • Sprague J, Condra JH, Arnheiter H, Lazzarini RA. Expression of a recombinant DNA gene coding for the vesicular stomatitis virus nucleocapsid protein. J Virol. 1983 Feb;45(2):773–781. [PMC free article] [PubMed]
  • Topol' LZ, Tatosian AG, Blair D, Kiselev FL. Novaia retsipientnaia kletochnaia liniia dlia transfektsii biologicheski aktivnykh onkogenov. Mol Biol (Mosk) 1991 Mar-Apr;25(2):541–551. [PubMed]
  • Topol LZ, Marx M, Calothy G, Blair DG. Transformation-resistant mos revertant is unable to activate MAP kinase kinase in response to v-mos or v-raf. Cell Growth Differ. 1995 Jan;6(1):27–38. [PubMed]
  • Topol LZ, Blair DG. Activation of the mitogen-activated protein kinase cascade in response to the temperature inducible expression of v-mos kinase. Cell Growth Differ. 1995 Sep;6(9):1119–1127. [PubMed]
  • White E, Sabbatini P, Debbas M, Wold WS, Kusher DI, Gooding LR. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol. 1992 Jun;12(6):2570–2580. [PMC free article] [PubMed]
  • Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science. 1994 Jan 28;263(5146):526–529. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...