• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Jul 1997; 17(7): 3629–3639.
PMCID: PMC232215

Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth.

Abstract

Breast cancers often progress from a hormone-dependent, nonmetastatic, antiestrogen-sensitive phenotype to a hormone-independent, antiestrogen- and chemotherapy-resistant phenotype with highly invasive and metastatic growth properties. This progression is usually accompanied by altered function of the estrogen receptor (ER) or outgrowth of ER-negative cancer cells. To understand the molecular mechanisms responsible for metastatic growth of ER-negative breast cancers, the activities of the transcription factor NF-kappaB (which modulates the expression of genes involved in cell proliferation, differentiation, apoptosis, and metastasis) were compared in ER-positive (MCF-7 and T47-D) and ER-negative (MDA-MB-231 and MDA-MB-435) human breast cancer cell lines. NF-kappaB, which is usually maintained in an inactive state by protein-protein interaction with inhibitor IkappaBs, was found to be constitutively active in ER-negative breast cancer cell lines. Constitutive DNA binding of NF-kappaB was also observed with extracts from ER-negative, poorly differentiated primary breast tumors. Progression of the rat mammary carcinoma cell line RM22-F5 from an ER-positive, nonmalignant phenotype (E phenotype) to an ER-negative, malignant phenotype (F phenotype) was also accompanied by constitutive activation of NF-kappaB. Analysis of individual subunits of NF-kappaB revealed that all ER-negative cell lines, including RM22-F5 cells of F phenotype, contain a unique 37-kDa protein which is antigenically related to the RelA subunit. Cell-type-specific differences in IkappaB alpha, -beta, and -gamma were also observed. In transient-transfection experiments, constitutive activity of an NF-kappaB-dependent promoter was observed in MDA-MB-231 and RM22-F5 cells of F phenotype, and this activity was efficiently repressed by cotransfected ER. Since ER inhibits the constitutive as well as inducible activation function of NF-kappaB in a dose-dependent manner, we propose that breast cancers that lack functional ER overexpress NF-kappaB-regulated genes. Furthermore, since recent data indicate that NF-kappaB protects cells from tumor necrosis factor alpha-, ionizing radiation-, and chemotherapeutic agent daunorubicin-mediated apoptosis, our results provide an explanation for chemotherapeutic resistance in ER-negative breast cancers.

Full Text

The Full Text of this article is available as a PDF (676K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Angel P, Baumann I, Stein B, Delius H, Rahmsdorf HJ, Herrlich P. 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5'-flanking region. Mol Cell Biol. 1987 Jun;7(6):2256–2266. [PMC free article] [PubMed]
  • Astruc ME, Chabret C, Bali P, Gagne D, Pons M. Prolonged treatment of breast cancer cells with antiestrogens increases the activating protein-1-mediated response: involvement of the estrogen receptor. Endocrinology. 1995 Mar;136(3):824–832. [PubMed]
  • Azzam HS, Arand G, Lippman ME, Thompson EW. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst. 1993 Nov 3;85(21):1758–1764. [PubMed]
  • Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. [PubMed]
  • Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996 Oct 4;87(1):13–20. [PubMed]
  • Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996 Nov 1;274(5288):782–784. [PubMed]
  • Blasi F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays. 1993 Feb;15(2):105–111. [PubMed]
  • Brooks PC, Strömblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996 May 31;85(5):683–693. [PubMed]
  • Clark GM, McGuire WL. Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol. 1988 Apr;15(2 Suppl 1):20–25. [PubMed]
  • Clarke R, Thompson EW, Leonessa F, Lippman J, McGarvey M, Frandsen TL, Brünner N. Hormone resistance, invasiveness, and metastatic potential in breast cancer. Breast Cancer Res Treat. 1993;24(3):227–239. [PubMed]
  • Dejardin E, Bonizzi G, Bellahcène A, Castronovo V, Merville MP, Bours V. Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene. 1995 Nov 2;11(9):1835–1841. [PubMed]
  • Deloukas P, van Loon AP. Genomic organization of the gene encoding the p65 subunit of NF-kappa B: multiple variants of the p65 protein may be generated by alternative splicing. Hum Mol Genet. 1993 Nov;2(11):1895–1900. [PubMed]
  • Dobrzanski P, Ryseck RP, Bravo R. Specific inhibition of RelB/p52 transcriptional activity by the C-terminal domain of p100. Oncogene. 1995 Mar 2;10(5):1003–1007. [PubMed]
  • Duffy MJ, O'Grady P, Devaney D, O'Siorain L, Fennelly JJ, Lijnen HJ. Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer. 1988 Aug 1;62(3):531–533. [PubMed]
  • Duffy MJ, Reilly D, McDermott E, O'Higgins N, Fennelly JJ, Andreasen PA. Urokinase plasminogen activator as a prognostic marker in different subgroups of patients with breast cancer. Cancer. 1994 Oct 15;74(8):2276–2280. [PubMed]
  • Dumont JA, Bitonti AJ, Wallace CD, Baumann RJ, Cashman EA, Cross-Doersen DE. Progression of MCF-7 breast cancer cells to antiestrogen-resistant phenotype is accompanied by elevated levels of AP-1 DNA-binding activity. Cell Growth Differ. 1996 Mar;7(3):351–359. [PubMed]
  • Franzoso G, Carlson L, Brown K, Daucher MB, Bressler P, Siebenlist U. Activation of the serum response factor by p65/NF-kappaB. EMBO J. 1996 Jul 1;15(13):3403–3412. [PMC free article] [PubMed]
  • Galang CK, García-Ramírez J, Solski PA, Westwick JK, Der CJ, Neznanov NN, Oshima RG, Hauser CA. Oncogenic Neu/ErbB-2 increases ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting ets activation blocks Neu-mediated cellular transformation. J Biol Chem. 1996 Apr 5;271(14):7992–7998. [PubMed]
  • Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone-Corsi P. Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell. 1990 Dec 21;63(6):1267–1276. [PubMed]
  • Gutman A, Wasylyk B. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J. 1990 Jul;9(7):2241–2246. [PMC free article] [PubMed]
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. [PubMed]
  • Hansen SK, Nerlov C, Zabel U, Verde P, Johnsen M, Baeuerle PA, Blasi F. A novel complex between the p65 subunit of NF-kappa B and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene. EMBO J. 1992 Jan;11(1):205–213. [PMC free article] [PubMed]
  • Henkel T, Machleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. [PubMed]
  • Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA, Narayanan R. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9901–9905. [PMC free article] [PubMed]
  • Horwitz KB. Mechanisms of hormone resistance in breast cancer. Breast Cancer Res Treat. 1993;26(2):119–130. [PubMed]
  • Inoue J, Kerr LD, Kakizuka A, Verma IM. I kappa B gamma, a 70 kd protein identical to the C-terminal half of p110 NF-kappa B: a new member of the I kappa B family. Cell. 1992 Mar 20;68(6):1109–1120. [PubMed]
  • Johnston SR, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M, Ebbs SR, Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995 Aug 1;55(15):3331–3338. [PubMed]
  • Kalkhoven E, Wissink S, van der Saag PT, van der Burg B. Negative interaction between the RelA(p65) subunit of NF-kappaB and the progesterone receptor. J Biol Chem. 1996 Mar 15;271(11):6217–6224. [PubMed]
  • Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990 May;9(5):1603–1614. [PMC free article] [PubMed]
  • Kerr LD, Miller DB, Matrisian LM. TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell. 1990 Apr 20;61(2):267–278. [PubMed]
  • Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. [PubMed]
  • Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 1996 Nov 1;87(3):565–576. [PubMed]
  • Lykkesfeldt AE, Madsen MW, Briand P. Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res. 1994 Mar 15;54(6):1587–1595. [PubMed]
  • Lyle R, Valleley EM, Sharpe PT, Hewitt JE. An alternatively spliced transcript, p65 delta 2, of the gene encoding the p65 subunit of the transcription factor NF-kappa B. Gene. 1994 Jan 28;138(1-2):265–266. [PubMed]
  • Maxwell SA, Mukhopadhyay T. A novel NF-kappa B p65 spliced transcript lacking exons 6 and 7 in a non-small cell lung carcinoma cell line. Gene. 1995 Dec 12;166(2):339–340. [PubMed]
  • McGuire WL, Chamness GC, Fuqua SA. Estrogen receptor variants in clinical breast cancer. Mol Endocrinol. 1991 Nov;5(11):1571–1577. [PubMed]
  • Murphy LC, Dotzlaw H. Variant estrogen receptor mRNA species detected in human breast cancer biopsy samples. Mol Endocrinol. 1989 Apr;3(4):687–693. [PubMed]
  • Nakanishi H, Taylor RM, Chrest FJ, Masui T, Utsumi K, Tatematsu M, Passaniti A. Progression of hormone-dependent adenocarcinoma cells to hormone-independent spindle carcinoma cells in vitro in a clonal spontaneous rat mammary tumor cell line. Cancer Res. 1995 Jan 15;55(2):399–407. [PubMed]
  • Nakshatri H, Chambon P. The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. J Biol Chem. 1994 Jan 14;269(2):890–902. [PubMed]
  • Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3650–3657. [PMC free article] [PubMed]
  • Narayanan R, Klement JF, Ruben SM, Higgins KA, Rosen CA. Identification of a naturally occurring transforming variant of the p65 subunit of NF-kappa B. Science. 1992 Apr 17;256(5055):367–370. [PubMed]
  • Nicholson S, Wright C, Sainsbury JR, Halcrow P, Kelly P, Angus B, Farndon JR, Harris AL. Epidermal growth factor receptor (EGFr) as a marker for poor prognosis in node-negative breast cancer patients: neu and tamoxifen failure. J Steroid Biochem Mol Biol. 1990 Dec 20;37(6):811–814. [PubMed]
  • Osborne CK, Yochmowitz MG, Knight WA, 3rd, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980 Dec 15;46(12 Suppl):2884–2888. [PubMed]
  • Price JE, Polyzos A, Zhang RD, Daniels LM. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 1990 Feb 1;50(3):717–721. [PubMed]
  • Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem. 1994 Apr 29;269(17):12940–12946. [PubMed]
  • Ruben SM, Narayanan R, Klement JF, Chen CH, Rosen CA. Functional characterization of the NF-kappa B p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol. 1992 Feb;12(2):444–454. [PMC free article] [PubMed]
  • Russell KS, Hung MC. Transcriptional repression of the neu protooncogene by estrogen stimulated estrogen receptor. Cancer Res. 1992 Dec 1;52(23):6624–6629. [PubMed]
  • Santen RJ, Manni A, Harvey H, Redmond C. Endocrine treatment of breast cancer in women. Endocr Rev. 1990 May;11(2):221–265. [PubMed]
  • Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene. 1993 Feb;8(2):395–405. [PubMed]
  • Schulze-Osthoff K, Krammer PH, Dröge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 1994 Oct 3;13(19):4587–4596. [PMC free article] [PubMed]
  • Sharma HW, Higgins-Sochaski K, Perez JR, Narayanan R. A DNA motif present in alpha V integrin promoter exhibits dual binding preference to distinct transcription factors. Anticancer Res. 1995 Sep-Oct;15(5B):1857–1867. [PubMed]
  • Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;10:405–455. [PubMed]
  • Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat. 1994;31(2-3):325–335. [PubMed]
  • Stein B, Baldwin AS, Jr, Ballard DW, Greene WC, Angel P, Herrlich P. Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J. 1993 Oct;12(10):3879–3891. [PMC free article] [PubMed]
  • Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995 Sep;15(9):4971–4979. [PMC free article] [PubMed]
  • Suyang H, Phillips R, Douglas I, Ghosh S. Role of unphosphorylated, newly synthesized I kappa B beta in persistent activation of NF-kappa B. Mol Cell Biol. 1996 Oct;16(10):5444–5449. [PMC free article] [PubMed]
  • Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol. 1992 Mar;150(3):534–544. [PubMed]
  • Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell. 1995 Feb 24;80(4):573–582. [PubMed]
  • Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chambon P. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 1989 Jul;8(7):1981–1986. [PMC free article] [PubMed]
  • Tzukerman M, Zhang XK, Pfahl M. Inhibition of estrogen receptor activity by the tumor promoter 12-O-tetradeconylphorbol-13-acetate: a molecular analysis. Mol Endocrinol. 1991 Dec;5(12):1983–1992. [PubMed]
  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science. 1996 Nov 1;274(5288):787–789. [PubMed]
  • Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995 Nov 15;9(22):2723–2735. [PubMed]
  • Wang CY, Mayo MW, Baldwin AS., Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996 Nov 1;274(5288):784–787. [PubMed]
  • Wasylyk C, Gutman A, Nicholson R, Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 1991 May;10(5):1127–1134. [PMC free article] [PubMed]
  • Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J. 1996 Sep 2;15(17):4682–4690. [PMC free article] [PubMed]
  • Yamashita J, Inada K, Yamashita S, Matsuo S, Nakashima Y, Ogawa M. Demonstration of a possible link between high grade malignancy in dimethylbenz[a]anthracene-induced rat mammary carcinoma and increased urokinase plasminogen activator content. Int J Clin Lab Res. 1992;22(3):165–168. [PubMed]
  • Yoza BK, Hu JY, McCall CE. Protein-tyrosine kinase activation is required for lipopolysaccharide induction of interleukin 1beta and NFkappaB activation, but not NFkappaB nuclear translocation. J Biol Chem. 1996 Aug 2;271(31):18306–18309. [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...