Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Apr 1997; 17(4): 2143–2150.
PMCID: PMC232062

Identification of a new class of exonic splicing enhancers by in vivo selection.

Abstract

In vitro selection strategies have typically been used to identify a preferred ligand, usually an RNA, for an identified protein. Ideally, one would like to know RNA consensus sequences preferred in vivo for as-yet-unidentified factors. The ability to select RNA-processing signals would be particularly beneficial in the analysis of exon enhancer sequences that function in exon recognition during pre-mRNA splicing. Exon enhancers represent a class of potentially ubiquitous RNA-processing signals whose actual prevalence is unknown. To establish an approach for in vivo selection, we developed an iterative scheme to select for exon sequences that enhance exon inclusion. This approach is modeled on the in vitro SELEX procedure and uses transient transfection in an iterative procedure to enrich RNA-processing signals in cultured vertebrate cells. Two predominant sequence motifs were enriched after three rounds of selection: a purine-rich motif that resembles previously identified splicing enhancers and a class of A/C-rich splicing enhancers (ACEs). Individual selected ACEs enhanced splicing in vivo and in vitro. ACE splicing activity was competed by RNAs containing the purine-rich splicing enhancer from cardiac troponin T exon 5. Thus, ACE activity is likely to require a subset of the SR splicing factors previously shown to mediate activity of this purine-rich enhancer. ACE motifs are found in two vertebrate exons previously demonstrated to contain splicing enhancer activity as well as in the well-characterized Drosophila doublesex (dsx) splicing enhancer. We demonstrate that one copy of the dsx repeat enhances splicing of a vertebrate exon in vertebrate cells and that this enhancer activity requires the ACE motif. We suggest the possibility that the dsx enhancer is a member of a previously unrecognized family of ACEs.

Full Text

The Full Text of this article is available as a PDF (887K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amendt BA, Hesslein D, Chang LJ, Stoltzfus CM. Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Mol Cell Biol. 1994 Jun;14(6):3960–3970. [PMC free article] [PubMed]
  • Berget SM. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. [PubMed]
  • Black DL. Finding splice sites within a wilderness of RNA. RNA. 1995 Oct;1(8):763–771. [PMC free article] [PubMed]
  • Black DL. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell. 1992 May 29;69(5):795–807. [PubMed]
  • Caputi M, Casari G, Guenzi S, Tagliabue R, Sidoli A, Melo CA, Baralle FE. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 1994 Mar 25;22(6):1018–1022. [PMC free article] [PubMed]
  • Carlo T, Sterner DA, Berget SM. An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon. RNA. 1996 Apr;2(4):342–353. [PMC free article] [PubMed]
  • Cooper TA. In vitro splicing of cardiac troponin T precursors. Exon mutations disrupt splicing of the upstream intron. J Biol Chem. 1992 Mar 15;267(8):5330–5338. [PubMed]
  • Dauwalder B, Amaya-Manzanares F, Mattox W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9004–9009. [PMC free article] [PubMed]
  • Del Gatto F, Breathnach R. Exon and intron sequences, respectively, repress and activate splicing of a fibroblast growth factor receptor 2 alternative exon. Mol Cell Biol. 1995 Sep;15(9):4825–4834. [PMC free article] [PubMed]
  • Dietz HC, Valle D, Francomano CA, Kendzior RJ, Jr, Pyeritz RE, Cutting GR. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. [PubMed]
  • Dirksen WP, Hampson RK, Sun Q, Rottman FM. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J Biol Chem. 1994 Mar 4;269(9):6431–6436. [PubMed]
  • Dirksen WP, Sun Q, Rottman FM. Multiple splicing signals control alternative intron retention of bovine growth hormone pre-mRNA. J Biol Chem. 1995 Mar 10;270(10):5346–5352. [PubMed]
  • Dominski Z, Kole R. Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol. 1991 Dec;11(12):6075–6083. [PMC free article] [PubMed]
  • Dominski Z, Kole R. Cooperation of pre-mRNA sequence elements in splice site selection. Mol Cell Biol. 1992 May;12(5):2108–2114. [PMC free article] [PubMed]
  • Dominski Z, Kole R. Identification of exon sequences involved in splice site selection. J Biol Chem. 1994 Sep 23;269(38):23590–23596. [PubMed]
  • Fu XD. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed]
  • Gontarek RR, Derse D. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing. Mol Cell Biol. 1996 May;16(5):2325–2331. [PMC free article] [PubMed]
  • Heinrichs V, Baker BS. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 1995 Aug 15;14(16):3987–4000. [PMC free article] [PubMed]
  • Huh GS, Hynes RO. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 1994 Jul 1;8(13):1561–1574. [PubMed]
  • Humphrey MB, Bryan J, Cooper TA, Berget SM. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5' splice sites in a differential internal exon. Mol Cell Biol. 1995 Aug;15(8):3979–3988. [PMC free article] [PubMed]
  • Inoue K, Hoshijima K, Higuchi I, Sakamoto H, Shimura Y. Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8092–8096. [PMC free article] [PubMed]
  • Lavigueur A, La Branche H, Kornblihtt AR, Chabot B. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 1993 Dec;7(12A):2405–2417. [PubMed]
  • Libri D, Stutz F, McCarthy T, Rosbash M. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA. 1995 Jun;1(4):425–436. [PMC free article] [PubMed]
  • Liu X, Mertz JE. HnRNP L binds a cis-acting RNA sequence element that enables intron-dependent gene expression. Genes Dev. 1995 Jul 15;9(14):1766–1780. [PubMed]
  • Lou H, Yang Y, Cote GJ, Berget SM, Gagel RF. An intron enhancer containing a 5' splice site sequence in the human calcitonin/calcitonin gene-related peptide gene. Mol Cell Biol. 1995 Dec;15(12):7135–7142. [PMC free article] [PubMed]
  • Lynch KW, Maniatis T. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 1995 Feb 1;9(3):284–293. [PubMed]
  • Lynch KW, Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 1996 Aug 15;10(16):2089–2101. [PubMed]
  • Madhani HD, Guthrie C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 1994 May 1;8(9):1071–1086. [PubMed]
  • Manley JL, Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. [PubMed]
  • Nagoshi RN, Baker BS. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 1990 Jan;4(1):89–97. [PubMed]
  • Ramchatesingh J, Zahler AM, Neugebauer KM, Roth MB, Cooper TA. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol. 1995 Sep;15(9):4898–4907. [PMC free article] [PubMed]
  • Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev. 1996 Apr;6(2):215–220. [PubMed]
  • Rio DC. Splicing of pre-mRNA: mechanism, regulation and role in development. Curr Opin Genet Dev. 1993 Aug;3(4):574–584. [PubMed]
  • Ryan KJ, Cooper TA. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol. 1996 Aug;16(8):4014–4023. [PMC free article] [PubMed]
  • Santisteban I, Arredondo-Vega FX, Kelly S, Loubser M, Meydan N, Roifman C, Howell PL, Bowen T, Weinberg KI, Schroeder ML, et al. Three new adenosine deaminase mutations that define a splicing enhancer and cause severe and partial phenotypes: implications for evolution of a CpG hotspot and expression of a transduced ADA cDNA. Hum Mol Genet. 1995 Nov;4(11):2081–2087. [PubMed]
  • Sirand-Pugnet P, Durosay P, Brody E, Marie J. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA. Nucleic Acids Res. 1995 Sep 11;23(17):3501–3507. [PMC free article] [PubMed]
  • Staffa A, Cochrane A. Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol Cell Biol. 1995 Aug;15(8):4597–4605. [PMC free article] [PubMed]
  • Staknis D, Reed R. SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol. 1994 Nov;14(11):7670–7682. [PMC free article] [PubMed]
  • Sun Q, Mayeda A, Hampson RK, Krainer AR, Rottman FM. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 1993 Dec;7(12B):2598–2608. [PubMed]
  • Tanaka K, Watakabe A, Shimura Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol Cell Biol. 1994 Feb;14(2):1347–1354. [PMC free article] [PubMed]
  • Tian H, Kole R. Selection of novel exon recognition elements from a pool of random sequences. Mol Cell Biol. 1995 Nov;15(11):6291–6298. [PMC free article] [PubMed]
  • Tian M, Maniatis T. Positive control of pre-mRNA splicing in vitro. Science. 1992 Apr 10;256(5054):237–240. [PubMed]
  • Tian M, Maniatis T. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell. 1993 Jul 16;74(1):105–114. [PubMed]
  • Tian M, Maniatis T. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 1994 Jul 15;8(14):1703–1712. [PubMed]
  • van Oers CC, Adema GJ, Zandberg H, Moen TC, Baas PD. Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol Cell Biol. 1994 Feb;14(2):951–960. [PMC free article] [PubMed]
  • Wang Z, Hoffmann HM, Grabowski PJ. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA. 1995 Mar;1(1):21–35. [PMC free article] [PubMed]
  • Watakabe A, Tanaka K, Shimura Y. The role of exon sequences in splice site selection. Genes Dev. 1993 Mar;7(3):407–418. [PubMed]
  • Xie WQ, Rothblum LI. Rapid, small-scale RNA isolation from tissue culture cells. Biotechniques. 1991 Sep;11(3):324–327. [PubMed]
  • Xu R, Teng J, Cooper TA. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol. 1993 Jun;13(6):3660–3674. [PMC free article] [PubMed]
  • Yeakley JM, Hedjran F, Morfin JP, Merillat N, Rosenfeld MG, Emeson RB. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements. Mol Cell Biol. 1993 Oct;13(10):5999–6011. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...