• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
Mol Cell Biol. Nov 1995; 15(11): 6188–6195.
PMCID: PMC230870

Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway.


A detailed analysis of structural and functional aspects of G-protein-coupled receptors, as well as discovery of novel pharmacophores that exert their effects on members of this class of receptors, will be facilitated by development of a yeast-based bioassay. To that end, yeast strains that functionally express the rat somatostatin receptor subtype 2 (SSTR2) were constructed. High-affinity binding sites for somatostatin ([125I-Tyr-11]S-14) comparable to those in native tissues were detected in yeast membrane extracts at levels equivalent to the alpha-mating pheromone receptor (Ste2p). Somatostatin-dependent growth of strains modified by deletion of genes encoding components of the pheromone response pathway was detected through induction of a pheromone-responsive HIS3 reporter gene, enabling cells to grow on medium lacking histidine. Dose-dependent growth responses to S-14 and related SSTR2 subtype-selective agonists that were proportional to the affinity of the ligands for SSTR2 were observed. The growth response required SSTR2, G alpha proteins, and an intact signal transduction pathway. The sensitivity of the bioassay was affected by intracellular levels of the G alpha protein. A mutation in the SST2 gene, which confers supersensitivity to pheromone, was found to significantly enhance the growth response to S-14. In sst2 delta cells, SSTR2 functionally interacted with both a chimeric yeast/mammalian G alpha protein and the yeast G alpha protein, Gpa1p; to promote growth. These yeast strains should serve as a useful in vivo reconstitution system for examination of molecular interactions of the G-protein-coupled receptors and G proteins.

Full Text

The Full Text of this article is available as a PDF (990K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alani E, Cao L, Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. [PMC free article] [PubMed]
  • Blumer KJ, Reneke JE, Thorner J. The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae. J Biol Chem. 1988 Aug 5;263(22):10836–10842. [PubMed]
  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973 Jan 5;179(4068):77–79. [PubMed]
  • Bruno JF, Xu Y, Song J, Berelowitz M. Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11151–11155. [PMC free article] [PubMed]
  • Chan RK, Otte CA. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):11–20. [PMC free article] [PubMed]
  • Chan RK, Otte CA. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):21–29. [PMC free article] [PubMed]
  • Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell. 1990 Nov 30;63(5):999–1011. [PubMed]
  • Company M, Errede B. A Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol Cell Biol. 1988 Dec;8(12):5299–5309. [PMC free article] [PubMed]
  • Conklin BR, Bourne HR. Structural elements of G alpha subunits that interact with G beta gamma, receptors, and effectors. Cell. 1993 May 21;73(4):631–641. [PubMed]
  • Conklin BR, Farfel Z, Lustig KD, Julius D, Bourne HR. Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature. 1993 May 20;363(6426):274–276. [PubMed]
  • Dietzel C, Kurjan J. The yeast SCG1 gene: a G alpha-like protein implicated in the a- and alpha-factor response pathway. Cell. 1987 Sep 25;50(7):1001–1010. [PubMed]
  • Dietzel C, Kurjan J. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol Cell Biol. 1987 Dec;7(12):4169–4177. [PMC free article] [PubMed]
  • Dohlman HG, Apaniesk D, Chen Y, Song J, Nusskern D. Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Jul;15(7):3635–3643. [PMC free article] [PubMed]
  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. [PubMed]
  • Eppler CM, Zysk JR, Corbett M, Shieh HM. Purification of a pituitary receptor for somatostatin. The utility of biotinylated somatostatin analogs. J Biol Chem. 1992 Aug 5;267(22):15603–15612. [PubMed]
  • Heisler S, Reisine TD, Hook VY, Axelrod J. Somatostatin inhibits multireceptor stimulation of cyclic AMP formation and corticotropin secretion in mouse pituitary tumor cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6502–6506. [PMC free article] [PubMed]
  • Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell. 1995 Jan 27;80(2):187–197. [PubMed]
  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. [PubMed]
  • Hou C, Gilbert RL, Barber DL. Subtype-specific signaling mechanisms of somatostatin receptors SSTR1 and SSTR2. J Biol Chem. 1994 Apr 8;269(14):10357–10362. [PubMed]
  • Huang HJ, Liao CF, Yang BC, Kuo TT. Functional expression of rat M5 muscarinic acetylcholine receptor in yeast. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1180–1186. [PubMed]
  • Jahng KY, Ferguson J, Reed SI. Mutations in a gene encoding the alpha subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling. Mol Cell Biol. 1988 Jun;8(6):2484–2493. [PMC free article] [PubMed]
  • Johnston SA, Hopper JE. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6971–6975. [PMC free article] [PubMed]
  • Kang YS, Kane J, Kurjan J, Stadel JM, Tipper DJ. Effects of expression of mammalian G alpha and hybrid mammalian-yeast G alpha proteins on the yeast pheromone response signal transduction pathway. Mol Cell Biol. 1990 Jun;10(6):2582–2590. [PMC free article] [PubMed]
  • King K, Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Control of yeast mating signal transduction by a mammalian beta 2-adrenergic receptor and Gs alpha subunit. Science. 1990 Oct 5;250(4977):121–123. [PubMed]
  • Kluxen FW, Bruns C, Lübbert H. Expression cloning of a rat brain somatostatin receptor cDNA. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4618–4622. [PMC free article] [PubMed]
  • Lewis DL, Weight FF, Luini A. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9035–9039. [PMC free article] [PubMed]
  • Li XJ, Forte M, North RA, Ross CA, Snyder SH. Cloning and expression of a rat somatostatin receptor enriched in brain. J Biol Chem. 1992 Oct 25;267(30):21307–21312. [PubMed]
  • Liebow C, Reilly C, Serrano M, Schally AV. Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2003–2007. [PMC free article] [PubMed]
  • Luthin DR, Eppler CM, Linden J. Identification and quantification of Gi-type GTP-binding proteins that copurify with a pituitary somatostatin receptor. J Biol Chem. 1993 Mar 15;268(8):5990–5996. [PubMed]
  • Madura K, Varshavsky A. Degradation of G alpha by the N-end rule pathway. Science. 1994 Sep 2;265(5177):1454–1458. [PubMed]
  • Marbach P, Bauer W, Briner U, Döpfner W, Petcher T, Pless J. Structure-function relationships of somatostatin analogs. Horm Res. 1988;29(2-3):54–58. [PubMed]
  • Meyerhof W, Paust HJ, Schönrock C, Richter D. Cloning of a cDNA encoding a novel putative G-protein-coupled receptor expressed in specific rat brain regions. DNA Cell Biol. 1991 Nov;10(9):689–694. [PubMed]
  • Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell. 1987 Sep 25;50(7):1011–1019. [PubMed]
  • Murray-Whelan R, Schlegel W. Brain somatostatin receptor-G protein interaction. G alpha C-terminal antibodies demonstrate coupling of the soluble receptor with Gi(1-3) but not with Go. J Biol Chem. 1992 Feb 15;267(5):2960–2965. [PubMed]
  • Nakafuku M, Itoh H, Nakamura S, Kaziro Y. Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the alpha subunit of mammalian G proteins. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2140–2144. [PMC free article] [PubMed]
  • O'Carroll AM, Lolait SJ, König M, Mahan LC. Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol. 1992 Dec;42(6):939–946. [PubMed]
  • Payette P, Gossard F, Whiteway M, Dennis M. Expression and pharmacological characterization of the human M1 muscarinic receptor in Saccharomyces cerevisiae. FEBS Lett. 1990 Jun 18;266(1-2):21–25. [PubMed]
  • Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell. 1993 May 21;73(4):747–760. [PubMed]
  • Raynor K, Reisine T. Analogs of somatostatin selectively label distinct subtypes of somatostatin receptors in rat brain. J Pharmacol Exp Ther. 1989 Nov;251(2):510–517. [PubMed]
  • Bell GI, Reisine T. Molecular biology of somatostatin receptors. Trends Neurosci. 1993 Jan;16(1):34–38. [PubMed]
  • Schlegel W, Wuarin F, Wollheim CB, Zahnd GR. Somatostatin lowers the cytosolic free Ca2+ concentration in clonal rat pituitary cells (GH3 cells). Cell Calcium. 1984 Jun;5(3):223–236. [PubMed]
  • Schlegel W, Wuarin F, Zbaren C, Wollheim CB, Zahnd GR. Pertussis toxin selectively abolishes hormone induced lowering of cytosolic calcium in GH3 cells. FEBS Lett. 1985 Sep 9;189(1):27–32. [PubMed]
  • Schultz LD, Hofmann KJ, Mylin LM, Montgomery DL, Ellis RW, Hopper JE. Regulated overproduction of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast. Gene. 1987;61(2):123–133. [PubMed]
  • Stevenson BJ, Rhodes N, Errede B, Sprague GF., Jr Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 1992 Jul;6(7):1293–1304. [PubMed]
  • Gietz D, St Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. [PMC free article] [PubMed]
  • Strnad J, Eppler CM, Corbett M, Hadcock JR. The rat SSTR2 somatostatin receptor subtype is coupled to inhibition of cyclic AMP accumulation. Biochem Biophys Res Commun. 1993 Mar 31;191(3):968–976. [PubMed]
  • Tatsumi H, Costa M, Schimerlik M, North RA. Potassium conductance increased by noradrenaline, opioids, somatostatin, and G-proteins: whole-cell recording from guinea pig submucous neurons. J Neurosci. 1990 May;10(5):1675–1682. [PubMed]
  • Teague MA, Chaleff DT, Errede B. Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7371–7375. [PMC free article] [PubMed]
  • Tyers M, Futcher B. Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol Cell Biol. 1993 Sep;13(9):5659–5669. [PMC free article] [PubMed]
  • Weiner JL, Guttierez-Steil C, Blumer KJ. Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway. J Biol Chem. 1993 Apr 15;268(11):8070–8077. [PubMed]
  • White RE, Schonbrunn A, Armstrong DL. Somatostatin stimulates Ca(2+)-activated K+ channels through protein dephosphorylation. Nature. 1991 Jun 13;351(6327):570–573. [PubMed]
  • Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):251–255. [PMC free article] [PubMed]
  • Yamashita N, Kojima I, Shibuya N, Ogata E. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells. Am J Physiol. 1987 Jul;253(1 Pt 1):E28–E32. [PubMed]
  • Yamashita N, Shibuya N, Ogata E. Hyperpolarization of the membrane potential caused by somatostatin in dissociated human pituitary adenoma cells that secrete growth hormone. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6198–6202. [PMC free article] [PubMed]
  • Yasuda K, Rens-Domiano S, Breder CD, Law SF, Saper CB, Reisine T, Bell GI. Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylylcyclase. J Biol Chem. 1992 Oct 5;267(28):20422–20428. [PubMed]
  • Yocum RR, Hanley S, West R, Jr, Ptashne M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Oct;4(10):1985–1998. [PMC free article] [PubMed]

Articles from Molecular and Cellular Biology are provided here courtesy of American Society for Microbiology (ASM)